Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 3 | 481-488

Article title

Czy życie zostało przyniesione z kosmosu?

Content

Title variants

EN
Could life arrive from the universe?

Languages of publication

PL EN

Abstracts

PL
Kiedy mogło powstać życie, skąd się wzięło na Ziemi? Badania naukowe ostatnich lat znacznie przybliżyły możliwość odpowiedzi na niektóre pytania jak np. wiek wszechświata, wiek układu słonecznego, skład chemiczny meteorytów i komet, dokładniejsze poznanie historii Ziemi, obecność planet w innych układach gwiezdnych, poznanie budowy molekularnej wielu struktur żywych organizmów, odkrycie organizmów (ekstremofili) żyjących w niekorzystnych warunkach, odkrycia najdłużej żyjących organizmów prokariotycznych, poszukiwania śladów życia na innych planetach. Poglądy Berzeliusa, Helmholtza i Lorda Kelvina o pozaziemskim pochodzeniu życia stają się coraz bardziej prawdopodobne. Również złożoność białek i procesów przez nie sterowanych pokazuje, że czas jaki natura miała na wytworzenie tak skomplikowanych struktur od końca okresu LHB (Late Heavy Bombardment) w historii Ziemi do momentu pojawienia się najstarszych bakterii jest raczej zbyt krótki. Hipoteza panspermii zdobywa coraz więcej zwolenników. Omawiane są różne rodzaje panspermii jak nekropanspermia, litopanspermia, kierowana panspermia, odwrócona panspermia i klasyczna panspermia.
EN
When life could appear and from where it arrived on Earth? Recent investigations bring nearer answers to some of such important questions as the age of the Universe and of our solar system, chemical composition of meteorites and comets, more detailed information of Earth history. Also the discovery of planets in other solar systems, recognition of molecular composition of living organisms, discovery of hyperthermophiles and fossils of living bacteria dated to millions years BP, as well as search of life on other planets can help in explanation of life origin. Old hypothesis of panspermia that life come to Earth from comets and meteorites has been championed by J. J. Berzelius, H. von Helmholtz, Lord Kelvin, Sir F. Hoyle, F. Crick an others. Also time elapsed between the period of the Late Heavy Bombardment and the appearance of first bacterial fossils on the Earth seems to be too short to evolve by Nature complex protein structures and various controlled by them life processes. Therefore, panspermia hypothesis finds more and more supporters. There are also reported related hypotheses such as necropanspermia, lithopanspermia directed panspermia and inverted panspermia

Keywords

Journal

Year

Volume

63

Issue

3

Pages

481-488

Physical description

Dates

published
2014

Contributors

  • Zakład Mykologii, Instytut Botaniki im W. Szafera PAN, Lubicz 46, 31-512 Kraków, Polska

References

  • Abramov O., Mojzis S. J., 2009. Microbial habitability of the hadean Earth diuring the late heavy bombardment. Nature 459, 419-422.
  • Bada J. L., Bigham C., Miller S. L., 1994. Impact melting of frozen oceans on the early Earth: Implication of the origin of the life. Proc. Natl. Acad. Sci. USA 91, 1248-1250.
  • Berzelius J. J., 1834. Analysis of the Alais meteorite and implications about life in other worlds.
  • Brasier M., Green O., Lindsay J., McLoughlin N., Steele A., Stoakes C., 2005. Critical testing of Earth's oldest putative fossil assemblage from the ∼3.5 Ga Apex chert, Chinaman Creek, Western Australia. Precambr. Res. 140, 55-102.
  • Brachaniec T., 2013. Przegląd potencjalnych śladów życia pozaziemskiego w meteorytach. Kosmos 62, 31-36.
  • Brenner D. J., Krieg N. R., Staley J. T., 2005. Bergey's manual of systematic bacteriology Tom II/A, Springer, New York.
  • Cech T. R., Bass B. L., 1986. Biological catalysis by RNA. Ann. Rev. Biochem. 55, 599-629.
  • Ciccarelli F. D., Doerks T., von Mering C., Christopher J., Creevey C. J., Snel B., Bork P. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283-1287.
  • Cisar J. O., Xu D. Q., Thompson J., Swaim W., Hus L., Kopecko D. J. 2000. An alternative interpretation of nanobacterium-induced biomineralization. Proc. Natl. Acad. Sci. USA 97, 11511-11515.
  • Cooper, G., Kimmich, N., Belisle, W., Sarinana, J., Brabham, K., Garrel, L., 2001. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414, 879-883.
  • Crick F., 1981. Life Itself. Its Origin and Nature. Simon & Schuster, New York.
  • Cronin J.R., Pizzarello S., Epstein S., Krishnamurthy R.V., 1993. Molecular and isotopic.analysis of the hydroxyl acids, dicarboxylic acids and hydrocarboxylic acids of the. Murchison meteorite. Geochim. Cosmochim. Acta 57, 4745-4752.
  • Dadachova E., Casadevall A. 2008. Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr. Opin. Microbiol. 11, 525-531.
  • Dawkins R. 1994. Ślepy zegarmistrz. PWN, Warszawa
  • Desonie D., 1997. Kosmiczne katastrofy. Prószyński i S-ka, Warszawa.
  • Dombrowski H. J., 1966. Geological problem in the question of living bacteria in Paleozoic salt deposits.[W:] Second symposium of salt. Rau J. (red.). Northern Ohio Geological Society Inc. Clevelend, 215-220.
  • Duda V. I., Suzina N. E., Polivtseva V. N., Boronin A. M. 2012. Ultramicrobacteria: formation of the koncept and contribution of ultramicrobacteria to biology. Microbiology 81, 379-390.
  • Edie L. C., 1962. Messages from Other Worlds. Science 134, 184.
  • Forterre P., Gribaldo S., 2007. The origin of modern terrestrial life. HFSP J. 1, 156-168.
  • Furnes H., Banerjee N. R., Muehlenbachs K., Staudigel H., de Wit M., 2004. Early life recorded in archean pillow lavas. Science 304, 578-581.
  • Garcia-Ruiz J. M., Hyde S. T, Carnerup A. M., Christy A.G., van Kranendonk M. J., Welham N.,J. 2003. Self-assembled silica-carbonate structures and detection of ancient microfossils. Science 302, 1194-1197.
  • Gesteland R. F., Cech T. R., Atkins J. A., 1999. The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Cold Spring Harbour Laboratory, New York.
  • Gibson D. G Glass J. I., Lartige C., Noskov V.N., Chuang R-Y., Algire M.A. i współaut., 2010. Creation of a bacterial cell controlled by a chemically synthesized genome. National Academic Press (US), Washington.
  • Hara T., Takagi K., Kajiura D., 2010. Transfer of life-bearing meteorites fromEarth to other planets. J. Cosmol. 7, 1731-1742.
  • Hazen R. M., Roedder E. 2001. How old are the bacteria from the Permian age. Nature 411: 155.
  • Hoyle F., Wickramasinghe C., 1993. Our Place in the Cosmos. J. M. Dent, London.
  • Hoyle F., Wickramasinghe N. C., 2000. Astronomical Origins of Life. Steps Towards Panspermia. Klewer Academic Publishers.
  • Jacobsen S. B., 2005. The Hf-W system and the origin of the Earth and Moon. Ann. Rev. Earth Planetary Sci. 33, 531-570.
  • Joseph R., 2009. Life on Earth come from other planets. J. Cosmol. 1, 1-56.
  • Joseph R., Schild R., 2010. Biological cosmology and the origins of life in the Universe. J. Cosmol. 5, 1040-1090.
  • Kasting J. F., 2005. Methane and climate during Precambrian era. Precambrian Res. 37, 119-129.
  • Kvenvolden K. A., Lawless J., Pering K., Petersen E., Flores J., Ponnaperra C., Kaplan I. R., Moore C., 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchinson meteorite. Nature 228, 923-926.
  • Loveland-Curtze J., Miteva V., Brenchley J. E., 2008. Novel ultramicrobacterial isolates from a deep Greenland ice core represent a proposed new species, Chryseobacterium greenlandense sp. nov. Extremophiles 14, 61-69.
  • Lovett S. T., 2006. Replication arrest-stimulated recombination: dependence on the RecA paralog, RadA Sms and translesion polymerase DinB. DNA Rapair (Amst) 5, 1421-1427.
  • Ma L.-J., Rogers S. O., Catranis C. M., Starmer W., 2000. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92, 286-295.
  • Marshall A. O., Marshall C. P., 2013. Comments on 'Biogenicity of Earth's earliest fossils: A resolution of the controversy by J. Schopf and A.B. Kudryavtsev. Gondwana Res. 22, 761-771.
  • McKay Ch., 2011. The search for life in our Solar System and the implications for science and society. Phil. Trans. R. Soc. 369, 594-606.
  • Melosh H. J., 1988. The rocky road to panspermia. Nature 332, 687-688.
  • Mimura K., Michioki O., Kenichiro S., Shigemasa H., 2007. Selective release of D and 13C from insoluble organic matter of the Murchison meteorite by impact shock. Meteorit. Planetary Sci. 42, 347-355.
  • Namysłowski B., 1913. Über unbekannte halophile Mikroorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bulletin International de L'Académie des Sciences de Cracovie Classe des Sciences Mathématiques et Naturelles, Série B. 88-104.
  • Namysłowski B., 1914. Les microorganisms des eaux bicarbonates et salinés en Galicie. Bulletin International de L'Académie des Sciences de Cracovie, Classe des Sciences Mathématiques et Naturelles, Série B. 5, 526-544.
  • Pascal R., Boiteau L., Forterre P., Gargaud M., Lazcano A., Lopez-Garzia P., Moreira D., Maurel M.,C., Pereto J., Prieur D., Reisse J., 2006. Prebiotic chemistry-biochemistry-emergence of life (4.42 Ga) Earth. Moon, Planets 98, 153-203.
  • Papineau D., De Gregorio B. T., Cody G. D., O'Neil J., Steele A., Stroud R. M., Fogel M. L., 2011. Young poorly crystalline graphite in the >3.8-Gyr-old Nuvvuagittuq banded iron formation. Nature Geoscience 4, 376-379.
  • Peck W. H., Valley J.W., Wilde A. A., Graham C. M., 2001. Oxygen isotope ratios and rare earth elements In 3.3 to 4.4 Ga zircons: ion microprobe evidence for high δ18 O continental crust and oceans in the Early Archean. Geochemica et Cosmochimica Acta 65, 4215-4229.
  • Rankenburg K., Brandon A. D., Nea, C. R., 2006. Neodymium Isotope Evidence for a Chondritic Composition of the Moon. Science 312, 1369-1372.
  • Reale G., 2003. Myśl starożytna. KUL, Lublin.
  • Redfield R. J., 2011. 'Comment on 'A Bacterium That Can Grow by Using Arsenic Instead of Phosphorus''. Science 332, 1149-1149.
  • Rysziewicz M., 2007. 4 miliardy lat. Eseje o ewolucji. Prószyński i S-ka, Warszawa.
  • Satterfield C. L., Lowenstein T. K., Vreeland R. H., Rosenzweig W. D., Powers D. W., 2005 . New evidence for 250 Ma age of halotolerant bacterium from a Permian salt crystal. Geology 33, 265-268.
  • Schopf J. W., 1993. Microfossils of the early Archean Apex Chert: new evidence of the antiquity of life. Science 260, 640-646.
  • Schrum J. P., Zhu T. F., Szostak J. W., 2010. The origin of celluler life. Cold Spring Harb Perspect Biol doi: 10.1101/cshperspect.a002212
  • Stein C. L., Krumhhausl J. L., 1988. A model for the evolution of brines in salt from the lower Salado Formation, southeastern New Mexico. Geochimica et Cosmochimica Acta 52, 1037-1046.
  • Thomson W. [Lord Kelvin], 1881. Presidential Address: On the origin of life on earth. Report of the Forty-First Meeting of the British Association for the Advancement of Science; held at Edinburgh in August.
  • Szostak J. W., 2012. Attempts to define life do not help to understand the origin of life. J. Biomol. Struc. Dynamics 29, 599-600.
  • Valley J. W., Peck W. H., King E. M., Wide S. A., 2002. A cool early Earth. Geology 30, 351-354.
  • Vreeland R. H., Rosenzweig W. D., 2002. The question of uniqueness of ancient bacteria. J. Industr. Microbiol. Biotechnol. 28, 32-41.
  • Uwins P. J. R., Webb R. I., Taylor A. P. 1998. Novel nano-organisms from Australian sandstones. Am. Mineralog. 83, 1541-1550.
  • Wacey D., Kilburn M. R., Saunders M., Cliff J., Brasier M. D., 2011. Microfossils of sulphur-metabolizing cells in 3,4 bilion-year-old rocks of Western Australia. Nature Geosci. 4, 698-702.
  • Weiner J., 2009. Hipotezy o powstaniu i wczesnej ewolucji życia. Kosmos 58, 501-528.
  • Wilde S., Valley J. W., Peck W. H., Graham C. M., 2001. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175-178.
  • Woese C. R., Kandler O., Wheelis M. L., 1990. Towards a natural system of organisms: proposal for the domains Archea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci USA 87, 4576-4579.
  • Woese C. R. 2000. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci USA 97, 8392-8396.
  • Wolfe-Simon F., Switzer Blum J., Kulp T. R., Gordon G. W., Hoeft S. E., Pett-Ridge J., Stolz J. F., Webb S. M., Weber P. K., Davies P. C. W., Anbar A. D., Oremland R. S., 2010. A bacterium that can grow by using arsenic instead of phosphorus. Science 332, 1163-1166.
  • Torella F., Morita R. Y. 1981. Microcultural study of bacterial size changes and microcolony and ultramicrocolony formation by heterotrophic Bacteria in seawater. App. Environ. Microbiol. 41, 518-527.
  • Zahnle K. J., 2006. Earth's earlier atmosphere. Elements 2, 217-222.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p481kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.