Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 3 | 429-441

Article title

Na początku były mszaki - czyli jak to było z wyjściem roślin na ląd

Authors

Content

Title variants

EN
In the beginning there were bryophytes - or how it was with the colonization of land by plants

Languages of publication

PL EN

Abstracts

PL
"Wyjście" rośliny na ląd to jedno z najważniejszych wydarzeń w historii życia na Ziemi, a jednocześnie jedna z największych zagadek w aspekcie ewolucyjnym i filogenetycznym. Obecnie nowe światło na pochodzenie i wczesną ewolucję roślin lądowych rzuciły badania molekularne, oparte na analizie sekwencji DNA. W niniejszym artykule podsumowano aktualną wiedzę na temat wczesnej filogenezy roślin lądowych. Przodkowie roślin lądowych wywodzą się z zielenic z klasy ramienicowych (Charophyceae), jednak trwają spory co do tego, które ramienicowe są najbliżej spokrewnione ze współczesnymi zarodkowymi (najczęściej wskazywane są rzędy ramienicowców Charales i tarczowłosowców Coleochaetales). Uważa się, że kolonizacja lądu została zapoczątkowana w ordowiku, około 475-450 mln lat temu - bo na tyle określa się wiek kryptospor, uważanych za pierwsze skamieniałe ślady występowania flory lądowej. Pierwsze rośliny lądowe prawdopodobnie przypominały współczesne wątrobowce, a mszaki są filogenetycznie najstarszymi żyjącymi roślinami lądowymi. Wzajemne zależności filogenetyczne w obrębie mszaków - między mchami, watrobowcami i glewikami - nie doczekały się końcowych rozstrzygnięć. Jako grupę siostrzaną w stosunku do roślin naczyniowych najczęściej wskazuje się glewiki, jednak niektóre analizy wskazują na mchy albo na klad tworzony przez mchy i glewiki. Wyjściu roślin na ląd towarzyszyły, oprócz wielu przystosowań anatomicznych i fizjologicznych, także zmiany w cyklu życiowym. Uważa się, że ważną rolę w kolonizacji lądu odegrały także endofityczne powiązania z grzybami.
EN
One of the most pivotal events in history of life on Earth was colonization of land by plants. It is also one of the mysteries of evolution and phylogenesis. Nowadays due to molecular studies, based on data from different gene sequences DNA, a new light was shed on the origin and early evolution of land plants. In this paper current knowledge of early phylogeny of land plants is summarized. Alleged ancestors of land plants are believed to have evolved from Charophytes, a group of green algae, but this issue is still controversial which of charophytes are the closest relatives of modern embryophytes (generally the Charales or Coleochaetales are mentioned). It is stated, that colonization of the land began in Ordovician times, ca. 475-450 milion years ago - such old are cryptospores, the earliest confirmed land plant fossils. The first land plants probably resembled the present-day liverworts, thus bryophytes phylogenetically are the oldest plants living on land. The phylogenic relationships among bryophytes - mosses, liverworts and hornworts - are not clearly explained. Hornworts are most frequently indicated as the sister group to tracheophytes, but some alternative analyses point at mosses as sister group to tracheophytes or a clade composed of mosses and hornworts. Colonization of land by plants was connected with changes in their life cycle (apart from a lot of anatomical and physiological adaptations). It is believed that endophytic fungal associations played a very important role in adaptations of plants to new environment.

Keywords

Journal

Year

Volume

63

Issue

3

Pages

429-441

Physical description

Dates

published
2014

Contributors

  • Zakład Botaniki Systematycznej, Uniwersytet Śląski, Jagiellońska 28, 40-032 Katowice, Polska

References

  • Bateman R. M., Crane P. R., DiMichele W. A., Kenrick P. R., Rowe N. P., Speck T., Stein W. E., 1998. Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation. Ann. Rev. Ecol. Syst. 29, 263-292.
  • Becker B., Marin B., 2009. Streptophyte algae and the origin of embryophytes. Ann. Bot. 103, 999-1004.
  • Bidartondo M. I., Read D. J., Trappe J. M., Merckx V., Ligrone R., Duckett J. G., 2011. The dawn of symbiosis between plants and fungi. Biol. Lett. 7, 574-577.
  • Blackwell W. H., 2003. Two theories of origin of the land-plant sporophyte: which is left standing. Bot. Rev. 69, 125-148.
  • Bower F. O., 1890. On antithetic as distinct from homologous alternation of generations in plants. Ann. Bot. 4, 347-370.
  • Boyce C. K., 2008. How green was Cooksonia? The importance of size in understanding the early evolution of physiology in the vascular plant lineage. Paleobiology 34, 179-194.
  • Boyce C. K., 2010. The evolution of plant development in a paleontological context. Curr. Opin. Plant Biol. 13, 102-107.
  • Campbell D. H., 1924. A remarkable development of the sporophyte in Anthoceros fusiformis. Aust. Ann. Bot. 38, 473-483.
  • Campbell N. A., Reece J. B., Urry L.A., Cain M. L., Wasserman S.A., Minorsky P. V., Jackson R.B., 2012. Biologia. Rebis, Poznań.
  • Chang Y., Graham S. W., 2011. Inferring the higher-order phylogeny of mosses (Bryophyta) and relatives using a large, multigene plastid data set. Amer. J. Bot. 98, 839-849.
  • Crandall-Stotler B., Stotler R. E., Long D. G., 2009. Morphology and classification of the Marchantiophyta. [W:] Bryophyte biology. Goffinet B., Shaw A. J. (red.). Cambridge University Press, Cambridge, 1-54.
  • Čelakovsky L., 1874. Ueber die verschiedenen Formen und die Bedeutung des Generationswechsels der Pflanzen. Sitzungsberichte der königlich böhmischen Gesellschaft der Wissenschaften in Prag 1874, 21-61.
  • Delwiche C. F., Graham L. E., Thomson N., 1989. Lignin-like compounds and sporopollenin in Coleochaete, an algal model for land plant ancestry. Science 245, 399-401.
  • Dombrovska O., Qiu Y.-L., 2004. Distribution of introns in the mitochondrial gene nad1 in land plants: phylogenetic and molecular evolutionary implications. Mol. Biol. Evol. 32, 246-263.
  • Doyle J. A., 2013. Phylogenetic analyses and morphological innovations in land plants. Ann. Plant Rev. 45, 1-50.
  • Duff R. J., Nickrent D. L., 1999. Phylogenetic relationships of land plants using mitochondrial small-subunit rDNA sequences. Amer. J. Bot. 86, 372-386.
  • Duff R. J., Villarreal J. C., Cargill D. C., Renzaglia K. S., 2007. Progress and challenges toward developing a phylogeny and classification of the hornworts. Bryologist 110, 214-243.
  • Edwards D., Feehan J., 1980. Records of Cooksonia-type sporangia from late Wenlock strata in Ireland. Nature 287, 41-42.
  • Edwards D., Duckett J. G., Richardson J. B., 1995. Hepatic characters in the earliest land plants. Nature 374, 635-636.
  • Edwards D., Wellman C. H., Axe L., 1999. Tetrads in sporangia and spore masses from the Upper Silurian and Lower Devonian of the Welsh Borderland. Bot. J. Linn. Soc. 130, 111-156.
  • Finet C., Timme R. E., Delwiche C. F., Marlétaz F., 2010. Multigene phylogeny of the green lineage reveals the origin and diversification of land plants. Curr. Biol. 20, 2217-2222.
  • Garbary D. J., Renzaglia K. S., 1998. Bryophyte phylogeny and the evolution of land plants: evidence from development and ultrastructure. [W:] Bryology for the twenty-first century. Bates J. W., Ashton N. W., Duckett J. G. (red.). Maney and British Bryological Society, Leeds. UK, 45-63.
  • Gerrienne P., Gonez P., 2011. Early evolution of life cycles in embryophytes: a focus on the fossil evidence of gametophyte/sporophyte size and morphological complexity. J. Syst. Evol. 49, 1-16.
  • Gerrienne P., Dilcher D. L., Bergamaschi S., Milagres I., Pereira E., Rodrigues M. A. C., 2006. An exceptional specimen of the early land plant Cooksonia paranensis, and a hypothesis on the life cycle of the earliest eutracheophytes. Rev. Palaeobot. Palynol. 142, 123-130.
  • Goffinet B., Buck W. R., Shaw A. J., 2009. Morphology, anatomy, and classification of the Bryophyta. [W:] Bryophyte biology. Goffinet B., Shaw A. J. (red.). Cambridge University Press, Cambridge, 55-138.
  • Graham L. E., 1982. The occurrence, evolution, and phylogenetic significance of parenchyma in Coleochaete Bréb. (Chlorophyta). Amer. J. Bot. 69, 447-454.
  • Graham L. E., Wilcox L. W., 1983. The occurrence and phylogenetic significance of putative placental transfer cells in the green alga Coleochaete. Am. J. Bot. 70, 113-120.
  • Graham L. E., Wilcox L. W., 2000. The origin of alternation of generations in land plants: a focus on matrotrophy and hexose transport. Phil. Trans. R. Soc. Lond. B 355, 757-767.
  • Graham L. E., Delwiche C. F., Mishler B. D., 1991. Phylogenetic connections between the 'green algae' and the 'bryophytes'. Adv. Bryol. 4, 213-244.
  • Gray J., 1985. The microfossils record of early land plants: advances in understanding of early terrestrialization, 1970-1984. Phil. Trans. R. Soc. Lond. B 309, 167-195.
  • Groth-Malonek M., Pruchner D., Grewe F., Knoop V., 2005. Ancestor of trans-splicing mitochondrial introns support serial sister group relationships of hornworts ans mosses with vascular plants. Mol. Biol. Evol. 22, 117-125.
  • Haeckel E., 1866. Generelle Morphologie der Organismen. Reimer, Berlin.
  • Haig D., 2008. Homologous versus antithetic alternation of generations and the origin of sporophytes. Bot. Rev. 74, 395-418.
  • Haskell G. 1949. Some evolutionary problems concerning the Bryophyta. The Bryologist 52, 49-57.
  • Heckmana D. S., Geiser D. M., Eidell B. R., Stauffer R. L., Kardos N. L., Hedges S. B., 2001. Molecular evidence for early colonization of land by fungi and plants. Science 293, 1129-1133.
  • Hedderson T. A., Chapman R. L., Rootes W. L., 1996. Phylogenetic relationships of bryophytes inferred from nuclear-encoded rRNA gene sequences. Plant Syst. Evol. 200, 213-224.
  • Karol K. G., McCourt R. M., Cimino M. T., Delwiche C. F., 2001. The closest living relatives of land plants. Science 294, 2351-2353.
  • Kelch D. G., Driskell A., Mishler B. D., 2004. Inferring phylogeny using genomic characters: a case study using land plant plastomes. [W:] Molecular systematics of bryophytes. Goffinet B., Hollowell V., Magill R. (red.). Monographs in Systematic Botany from the Missouri Botanical Garden 98, 2-12.
  • Kenrick P., 2000. The relationships of vascular plants. Phil. Trans. R. Soc. Lond. B 355, 847-855.
  • Kenrick P., Crane P. R., 1997. The origin and early evolution of plants on land. Nature 389, 33-39.
  • Kranz H. D., Mikš D., Siegler M. L., Capesius I., Sensen C. W., Huss V. A. R., 1995. The origin of land plants: phylogenetic relationships among charophytes, bryophytes, and vascular plants inferred from complete small-subunit ribosomal RNA gene sequences. J. Mol. Evol. 41, 74-84.
  • Kugita M., Kaneko A., Yamamoto Y., Takeya Y., Matsumoto T., Yoshinaga K., 2003. The complete nucleotide sequence of the hornwort (Anthoceros formosae) chloroplast genome: insight into the earliest land plants. Nucleic Acids Res. 31, 716-721.
  • Lewis L. A., McCourt R. M., 2004. Green algae and the origin of land plants. Am. J. Bot. 91, 1535-1556.
  • Ligrone R., Carafa A., Lumini E., Bianciotto V., Bonfante P., Duckett J. G., 2007. Glomeromycotean associations in liverworts: a molecular, cellular and taxonomic analysis. Amer. J. Bot. 94, 1756-1777.
  • McCourt R. M., Delwiche C. F., Karol K. G., 2004. Charophyte algae and land plants origins. Trends Ecol. Evol. 19, 661-666.
  • Mishler B. D., 2000. Evolution of the major moss lineages: phylogenetic analyses based on multiple gene sequences and morphology. Bryologist 103, 187-211.
  • Mishler B. D., Churchill S. P., 1984. A cladistic approach to the phylogeny of the 'Bryophytes'. Brittonia 36, 406-424.
  • Mishler B. D., Thrall P. H., Hopple J. S. J., De Luna E., Vilgalys R., 1992. A molecular approach to the phylogeny of bryophytes: cladistic analysis of chloroplast-encoded 16S and 23S ribosomal RNA genes. Bryologist 95, 172-180.
  • Mishler B. D., Lewis L. A., Buchheim M. A., Renzaglia K. S., Garbary D. J., Delwiche C. F., Zechman F. W., Kantz T. S., Chapman R. L., 1994. Phylogenetic relationships of the 'green algae' and 'bryophytes'. Ann. Missouri. Bot. Gard. 81, 451-483.
  • Newton A. E., Cox C. J., Duckett J. G., Wheeler J. A., Goffinet B., Hedderson T. A. J., Nickrent D. L., Parkinson C. L., Palmer J. D., Duff R. J., 2000. Multigene phylogeny of land plants with special reference to bryophytes and the earliest land plants. Mol. Biol. Evol. 17, 1885-1895.
  • Niklas K. J., Kutschera U., 2009. The evolutionary development of plant body plans. Funct. Plant Biol. 36, 682-695.
  • Niklas K. J., Kutschera U., 2010. The evolution of the land plant life cycle. New Phytologist 185, 27-41.
  • Nishiyama T., Kato M., 1999. Molecular phylogenetic analysis among bryophytes and tracheophytes based on combined data of plastid coded genes and the 18S rRNA gene. Mol. Biol. Evol. 16, 1027-1036.
  • Okuda K., Brown R. M. Jr., 1992. A new putative cellulose-synthesizing complex of Coleochaete scutata. Protoplasma 168, 51-63.
  • Parenti L. R., 1980. A phylogenetic analysis of the land plants. Biol. J. Linn. Soc. 13, 225-242.
  • Petersen J., Brinkmann H., Cerff R., 2003. Origin, evolution, and metabolic role of a novel glycolytic GAPDH enzyme recruited by land plants plastids. J. Mol. Evol. 57, 16-27.
  • Pressel S., Bidartondo M. J., Ligrone R., Duckett J. G., 2010. Fungal symbioses in bryophytes: new insights in the twenty first century. Phytotaxa 9, 238-253.
  • Pringsheim N., 1876. Über den Generationswechsel der Thallophyten und seinen Anschluss an den Generationswechsel der Moose. Monatsberichte der königlich preussischen Akademie der Wissenschaften zu Berlin 1876, 869-911.
  • Pringsheim N., 1878. Ueber Sprossung der Moosfruechte und den Generationswechel der Thallophyten. Jahrbuecher fuer wissenschaftliche Botanik 11, 1-46.
  • Qiu Y.-L., 2008. Phylogeny and evolution of charophytic algae and land plants. J. Syst. Evol. 46, 287-306.
  • Qiu Y.-L., Lee J., 2000. Transition to a land flora: a molecular phylogenetic perspective. J. Phycol. 36, 799-802.
  • Qiu Y.-L., Cho Y., Cox J. C., Palmer J. D., 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Nature 394, 671-674.
  • Qiu Y.-L., Libo L., Wang B., Chen Z., Knoop V., Groth-Malonek M., Dombrovska O., Lee J., Kent L., Rest J., Estabrook G. F., Hendry T. A., Taylor D. W., Testa C. M., Ambros M., Crandall-Stotler B., Duff R.J., Stech M., Frey W., Quandt D., Davis C. C., 2006. The deepest divergences in land plants inferred from phylogenomic evidence. Proc. Natl. Acad. Sci. USA 103, 15511-15516.
  • Qiu Y.-L., Li L., Wang B., Chen Z., Dombrovska O., Lee J., Kent L., Li R., Jobson R. W., Hendry T. A., Taylor D. W., Testa C. M., Ambros M., 2007. A nonflowering land plant phylogeny inferred from nucleotide sequences of seven chloroplast, mitochondrial, and nuclear genes. Int. J. Plant Sci. 168, 691-708.
  • Qiu Y.-L., Taylor A. B., McManus H. A., 2012. Evolution of the life cycle in land plants. J. Syst. Evol. 50, 171-194.
  • Read D. J., Duckett J. G., Francis R., Ligrone R., Russell A., 2000. Symbiotic fungal associations in 'lower' land plants. Phil. Trans. R. Soc. Lond. 355, 815-831.
  • Remy W., 1980. Der Generationswechsel der Archegoniaten Pflanzen im Übergangsfeld von aquatischer zu terrestrischer Lebensweise. Argumenta Palaeobotanica 6, 139-155.
  • Remy W., Gensel P. G., Hass H., 1993. The gametophyte generation of some early Devonian plants. Int. J. Plant Sci. 154, 35-58.
  • Remy W., Taylor T. N., Hass H., Kerp H., 1994. Four hundred-million-year-old vesicular arbuscular mycorrhize. Proc. Natl. Acad. Sci. USA 91, 11841-11843.
  • Renzaglia K. S., Duff R. J., Nickrent D. L., Garbary D. J., 2000. Vegetative and reproductive innovations of early land plants: implications for a unified phylogeny. Phil. Trans. R. Soc. Lond. B 355, 769-793.
  • Renzaglia K. S., Schuette S., Duff R. J., Ligrone R., Shaw A. J., Mishler B. D., Duckett J. G., 2007. Bryophyte phylogeny: advancing the molecular and morphological frontiers. Bryologist 110, 179-213.
  • Renzaglia K. S., Villarreal J. C., Duff R. J., 2009. New insights into morphology, anatomy, and systematics of hornworts. [W:] Bryophyte biology. Goffinet B., Shaw A. J. (red.). Cambridge University Press, Cambridge, 139-171.
  • Richardson J. B., Ford J. H., Parker F., 1984. Miospores, correlation and age of some Scottish Lower Old Red Sandstone sediments from the Strathmore region (Fife and Angus). J. Micropalaeontol. 3, 109-124.
  • Rubinstein C. V., Gerrienne P., de la Puente G. S., Astini R. A., Steemans P., 2010. Early Middle Ordovician evidence for land plants in Argentina (eastern Gondwana). New Phytologist 188, 365-369.
  • Samigullin T. K., Yacentyuk S. P., Degtyaryeva G. V., Valieho-Roman K. M., Bobrova V. K., Capesius I., Martin W. F., Troitsky A. V., Filin V. R., Antonov A. S., 2002. Paraphyly of bryophytes and close relationship of hornworts and vascular plants inferred from analysis of chloroplast rDNA ITS (cpITS) sequences. Arctoa 11, 31-43.
  • Scott D.H., 1895. Nathanael Pringsheim. Nature 51, 399-402.
  • Shaw J., Renzaglia K., 2004. Phylogeny and diversification of bryophytes. Amer. J. Bot. 91, 1557-1581.
  • Shaw A. J., Szövényi P., Shaw B., 2011. Bryophyte diversity and evolution: windows into the early evolution of land plants. Amer. J. Bot. 98, 352-369.
  • Smith G. M., 1955. Cryptogamic botany. Vol. 1. Bryophytes and pteridophytes. McGraw-Hill, New York.
  • Steemans P., Le Hérissé A., Melvin J., Miller M. A., Paris F., Verniers J., Wellman C. H., 2009. Origin and radiation of the earliest vascular land plants. Science 324, 353.
  • Steemans P., Lepot K., Marshall C. P., Le Hérissé A., Javaux E. J., 2010. FTIR characterisation of the chemical composition of Silurian miospores (cryptospores and trilete spores) from Gotland, Sweden. Rev. Palaeobot. Palynol. 162, 577-590.
  • Strother P. K., 2010. Thalloid carbonaceous incrustations and the asynchronous evolution of embryophyte characters during the Early Paleozoic. Int. J. Coal Geol. 83, 154-161.
  • Syrett P. J., Al-Houty F. A. A., 1984. The phylogenetic significance of the occurrence of urease/urea amidolyase and glycolate oxidase/glycolate dehydrogenase in green algae. Brit. Phycol. J. 19, 11-21.
  • Szweykowska A., Szweykowski J.,1993. Botanika. Tom drugi. Systematyka. PWN, Warszawa.
  • Szweykowski J., 1960. Zagadnienia ewolucji wątrobowców. Wiadomości Botaniczne 4, 197-211.
  • Taylor T. N., Kerp H., Hass H., 2005. Life history biology of early land plants: deciphering the gametophyte phase. Proc. Natl. Acad. Sci. USA 102, 5892-5897.
  • Taylor W. A., Strother P. K., 2009. Ultrastructure, morphology, and topology of Cambrian palynomorphs from the Lone Rock Formation, Wisconsin, USA. Rev. Palaeobot. Palynol. 153, 296-309.
  • Timme R.E., Bachvaroff T.R., Delwiche C.F., 2012. Broad phylogenomic sampling and the sister lineage of land plants. PLoS ONE 7(1): e29696.
  • Turmel M., Pombert J.-F., Charlebois P., Otis C., Lemieux C., 2007. The green algal ancestry of land plants as revealed by the chloroplast genome. Int. J. Plant Sci. 168, 679-689.
  • VanAller Hernick L., Landing E., Bartowski K. E., 2008. Earth's oldest liverworts - Metzgeriothallus sharonae sp. nov. from the Middle Devonian (Givetian) of eastern New York, USA. Rev. Palaeobot. Palynol. 148, 154-162.
  • Wang B., Yeun L. H., Xue J.-Y., Liu Y., Ané J.-M., Qiu Y.-L., 2010. Presence of three mycorrhizal genes in the common ancestor of land plants suggests a key role of mycorrhizas in the colonization of land by plants. New Phytologist 186, 514-525.
  • Wellman C. H., 2010. The invasion of the land by plants: when and where? New Phytologist 188, 306-309.
  • Wellman C. H., Gray J., 2000. The microfossil record of early land plants. Phil. Trans. R. Soc. Lond. B 355, 717-732.
  • Wellman C. H., Edwards D., Axe L., 1998. Permanent dyads in sporangia and spore masses from the Lower Devonian of the Welsh Borderland. Bot. J. Linn. Soc. 127, 117-147.
  • Wellman C. H., Osterloff P. L., Mohiuddin U., 2003. Fragments of the earliest land plants. Nature 425, 282-285.
  • Wodniok S., Brinkmann H., Glöckner G., Heidel A.J., Philippe H., Melkonian M., Becker B., 2011. Origin of land plants: Do conjugating green algae hold the key? BMC Evol. Biol. 11, 104.
  • Wolf P. G., Karol K. G., Mandoli D. F., Kuehl J., Arumuganathan K., Ellis M. W., Mishler B. D., Kelch D. G., Olmstead R. G., Boore J. L., 2005. The first complete chloroplast genome sequence of a lycophyte, Huperzia lucidula (Lycopodiaceae). Gene 350, 117-128.
  • Zimmermann W., 1930. Die Phylogenie der Pflanzen: ein Überblick über Tatsachen und Probleme. G. Fischer, Jena.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p429kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.