Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 3 | 395-413

Article title

Metabolizm miedzi oraz charakterystyka dziedzicznych zespołów chorobowych, na tle niedoboru miedzi, spowodowanych zaburzeniami aktywności białka ATP7A

Content

Title variants

EN
Copper metabolism and characteristic of inherited metabolic syndromes caused by copper deficiency and lack of ATP7A protein activity

Languages of publication

PL EN

Abstracts

PL
Miedź, ze względu na swoje właściwości oksydoredukcyjne, jest kofaktorem wielu enzymów, ale nadmiar tego pierwiastka w organizmie jest szkodliwy, gdyż przyczynia się do powstawania dużych ilości wolnych rodników. W konsekwencji organizmy wykształciły precyzyjne mechanizmy kontrolujące transport i metabolizm miedzi, zarówno na poziomie komórkowym, jak i w obrębie całego organizmu. W transport tego pierwiastka w komórce zaangażowane są białka, które możemy podzielić na trzy grupy. Pierwszą są transbłonowe białka odpowiedzialne za transport miedzi przez błonę komórkową do cytoplazmy, do których zaliczamy białka CTR1 oraz DMT1. Kolejną grupą są białka chaperonowe, a ich główną funkcją jest dostarczenie miedzi do odpowiednich enzymów w komórce. Zaliczamy do nich białka CCS, ATOX1, COX oraz SCO. Ostatnią grupą są białka ATP7A oraz ATP7B, które odpowiadają za utrzymanie właściwego stężenia jonów Cu w komórce poprzez aktywny eksport miedzi z komórki lub przyłączanie tego pierwiastka do białek enzymatycznych. Zaburzenia w funkcjonowaniu wymienionych powyżej białek powodują naruszenie homeostazy miedzi w organizmie, co w konsekwencji prowadzi do rozwoju wielu zespołów chorobowych. U ludzi, intensywnie badana jest mutacja genu ATP7A, a nasilenie objawów chorobowych zależy od typu mutacji. Ekspresja całkowicie niefunkcjonalnego białka prowadzi do powstania klasycznej choroby Menkesa, która charakteryzuje się znaczącym upośledzeniem fizycznym i umysłowym pacjentów oraz śmiercią w okresie wczesnodziecięcym. W przypadku zachowania części aktywności białka ATP7A rozwija się lżejsza forma wspomnianej choroby, której objawy nie są tak dotkliwe, a pacjenci dożywają nawet pięćdziesięciu lat. Mutacje genu ATP7A mogą najprawdopodobniej prowadzić także do rozwoju dziedzicznej neuropatii ruchowej, aczkolwiek objawy chorobowe związane są głównie z osłabieniem i zanikiem mięśni kończyn górnych i nie przypominają objawów choroby Menkesa. Okazało się także, że mutacje innych genów mogą wpływać na prawidłowe funkcjonowanie białka ATP7A. Badania ostatniej dekady wykazały istnienie dwóch nowych zespołów chorobowych związanych z niedoborem miedzi w organizmie. Są to zespół Huppke-Brendel oraz zespół MEDNIK, spowodowane mutacjami, odpowiednio w genach SLC33A1 oraz AP1S1. Białko kodowane na matrycy pierwszego z wymienionych genów odpowiada za acetylację białek, z kolei drugie białko jest związane z "pakowaniem" odpowiednich białek w pęcherzyki klatrynowe i ich transport z aparatu Golgiego do błony komórkowej. Wymienione powyżej białka są najprawdopodobniej niezbędne dla prawidłowej aktywności białka ATP7A, stąd mutacje w genach SLC33A1 i AP1S1 pośrednio powodują zaburzenia metabolizmu miedzi. Niestety, pomimo prób leczenia chorób związanych z niedoborem miedzi w organizmie, nadal nie opracowano skutecznej terapii.
EN
Copper due to its oxyreductive properties plays a role as a catalytic cofactor in a variety of enzymes. On the other hand excess of copper can be cytotoxic because copper can participate in reactions that result in the production of highly reactive free radicals. Thus, living organisms developed precise regulatory mechanisms to keep accurate copper homeostasis. In cells copper ions are bound by several proteins such as: membrane transporters (CTR1 and DMT1) responsible for influx of Cu ions into cytoplasm; copper chaperones (CCS, ATOX1, COX and SCO) necessary for copper delivery to specific subcellular compartments and thereby to cuproenzymes; Cu-transporting P-type ATPases (ATP7A and ATP7B) involved in copper transport into the secretory pathway and its export from the cell. Mutations of these proteins result in disturbance of copper homeostasis and lead to severe metabolic diseases. For example mutations of critical copper-transport protein- ATP7A are implicated in distinctive phenotypes of Menkes disease or the milder Occipital Horn Syndrome. Severe form of Menkes disease characterized by growth failure and deterioration of the nervous system developed when mutation lead to lack of activity of ATP7A protein. When mutated ATP7A protein preserves partial activity, milder form of disease is developed. Recently it was reported that missense mutations in ATP7A gene can lead to isolated adult-onset distal motor neuropathy. Such mutations appear to selectively disturb normal motor neuron function and it is distinctively different from Menkes disease, however. Additionally, two other syndromes induced by autosomal recessive mutations which indirectly affected the function of ATP7A have been discovered. Huppke-Brendel syndrome is caused by mutations in SLC33A1 which encodes an acetyl CoA transporter needed for acetylation proteins. MEDNIK syndrome is developed in the presence of mutations in the s1A subunit of adaptor protein complex 1 (AP1S1 gene), which mediates intracellular trafficking linking clathrin to receptors in coated vesicle. Both proteins are probably involved in ATP7A modification or trafficking, respectively. Unfortunately, therapeutic strategies against inherited copper deficiency disorders are still unsuccessful.

Keywords

Journal

Year

Volume

63

Issue

3

Pages

395-413

Physical description

Dates

published
2014

Contributors

  • Uniwersytet Jagielloński, Instytut Zoologii, Gronostajowa 9, 30-387 Kraków, Polska
  • Uniwersytet Jagielloński, Instytut Zoologii, Gronostajowa 9, 30-387 Kraków, Polska
  • Uniwersytet Jagielloński, Instytut Zoologii, Gronostajowa 9, 30-387 Kraków, Polska

References

  • Agarwal S., Hong D., Desai N. K., Sazinsky M. H., Argüello J. M., Rosenzweig A. C., 2010. Structure and interactions of the C-terminal metal binding domain of Archaeoglobus fulgidus CopA. Proteins 78, 2450-2458.
  • Ahmed S., Deng J., Borjigin J., 2005. A new strain of rat for functional analysis of PINA. Brain research. Mol. Brain Res. 137, 63-69.
  • Argüello J. M., Eren E., González-Guerrero M., 2007. The structure and function of heavy metal transport P1B-ATPases. Biometals 20, 233-248.
  • Arredondo M., Mendiburo M. J., Flores S., Singleton S. T., Garrick M. D., 2014. Mouse divalent metal transporter 1 is a copper transporter in HEK293 cells. Biometals 27, 115-123.
  • Banci L., Bertini I., Cantini F., Migliardi M., Natile G., Nushi F., Rosato A., 2009. Solution structures of the actuator domain of ATP7A and ATP7B, the Menkes and Wilson disease proteins. Biochemistry 48, 7849-7855.
  • Borjigin J., Payne A. S., Deng J., Li X., Wang M. M., Ovodenko B., Gitlin J. D., Snyder S. H., 1999. A novel pineal night-specific ATPase encoded by the Wilson disease gene. J. Neurosci. 19, 1018-1026.
  • Danks D. M., 1988. Copper deficiency in humans. Annu. Rev. Nutr. 8, 235-257.
  • Desai V., Kaler S. G., 2008. Role of copper in human neurological disorders. Am. J. Clin. Nutr. 88, 855S-858S.
  • Didonato M., Sarkar B., 1997. Copper transport and its alterations in Menkes and Wilson diseases. Biochim. Biophys. Acta. 1360, 3-16.
  • Dijkstra M., Van Den Berg G. J., Wolters H., In't Veld G., Slooff M. J., Heymans H. S., Kuipers F., Vonk R. J., 1996. Adenosine triphosphate-dependent copper transport in human liver. J. Hepatol. 25, 37-42.
  • Drac H., 2009. Wieloogniskowa neuropatia ruchowa. Polski Przegląd Neurol. 5, 74-77.
  • Gourdon P., Sitsel O., Lykkegaard Karlsen J., Birk Møller L., Nissen P., 2012. Structural models of the human copper P-type ATPases ATP7A and ATP7B. Biol. Chem. 393, 205-216.
  • Gu Y. H., Kodama H., Shiga K., Nakata S., Yanagawa Y., Ozawa H., 2005. A survey of Japanese patients with Menkes disease from 1990 to 2003: incidence and early signs before typical symptomatic onset, pointing the way to earlier diagnosis. J. Inherit. Metab. Dis. 28, 473-478.
  • Guo Y., Nyasae L., Braiterman L. T., Hubbard A. L., 2005. NH 2 -terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am. J. Physiol. Gastrointest. Liver Physiol.289, G904-G916.
  • Gupta A., Lutsenko S., 2012. Evolution of copper transporting ATPases in eukaryotic organisms. Curr. Genom. 13, 124-133.
  • Guy. H., Kodama H., Shiga K., Nakata S., Yanagawa Y., Ozawa H., 2005. A survey of Japanese patients with Menkes disease from 1990 to 2003: incidence and early signs before typical symptomatic onset, pointing the way to earlier diagnosis. J. Inherit. Metab. Dis. 28, 473-478.
  • Haddad M. R., Macri C. J., Holmes C. S., Goldstein D. S., Jacobson B. E., Centeno J. A., Popek E. J., Gahl W. A., Kaler S. G., 2012. In utero copper treatment for Menkes disease associated with a severe ATP7A mutation. Mol. Genet. Metab. 107, 222-228.
  • Harris E. D., 1993. Menkes Disease: Perspective and Update on a Fatal Copper Disorder. Nutr. Rev. 51, 235-238.
  • Horváth R., Freisinger P., Rubio R., Merl T., Bax R., Mayr J. A., Shawn Müller-Höcker J., Pongratz D., Møller L. B., Horn N., Jaksch M., 2005. Congenital cataract, muscular hypotonia, developmental delay and sensorineural hearing loss associated with a defect in copper metabolism. J. Inherit. Metab. Dis. 28, 479-492.
  • Huffman D. L., O'halloran T. V., 2001. Function, structure, and mechanism of intracellular copper trafficking proteins. Ann. Rev. Biochem. 70, 677-701.
  • Huppke P., Brendel C., Kalscheuer V., Korenke G. C., Marquardt I., Freisinger P., Christodoulou J., Hillebrand M., Pitelet G., Wilson C., Gruber-Sedlmayr U., Ullmann R., Hass S., Elpeleg O., Nürnberg G., Nürnberg P., Dad S, Møller L. B., Kler S. G., Gärtner J., 2012. Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am. J. Hum. Genet. 90, 61-68.
  • Huster D., 2010. Wilson disease. Best Pract. Res. Clin. Gastroenterol. 24, 531-539.
  • Kaler S. G,. 1999. Metabolic and molecular bases of Menkes disease and occipital horn syndrom. Pediatr. Int. 41, 436-442.
  • Kaler S. G., Holmes C. S., Goldstein D. S., Tang J., Godwin S. C., Donsante A., Liew C. J., Sato S., Patronas N., 2008. Neonatal diagnosis and treatment of Menkes disease. N. Engl. J. Med. 358, 605-614.
  • Kaler S. G., 2013. Inborn errors of copper metabolism. Handb. Clin. Neurol. 113, 1745-1754.
  • Kawamata H., Manfredi G., 2010. Import, maturation, and function of SOD1 and its copper chaperone CCS in the mitochondrial intermembrane space. Antiox. Redox Signal. 13, 1375-1384.
  • Kelly E. J., Palmiter R. D., 1996. A murine model of Menkes disease reveals a physiological function of metallothionein. Nat. Genet. 13, 219-222.
  • Kelner G.S., Lee M., Clark M. E., Maciejewski D., McGrath D., Rabizadeh S., Lyons T., Bredesen D., Jenner P., Maki R. A., 2000. The copper transport protein Atox1 promotes neuronal survival. J. Biol. Chem. 7, 580-584.
  • Kennerson M. L., Nicholson G. A., Kaler S. G., Kowalski B., Mercer J. F., Tang J., Llanos R. M., Chu S., Takata R. I., Speck-Martins C. E., Baets J., Almeida-Souza L., Fischer D., Timmerman V., Taylor P. E., Scherer S. S., Ferguson T. A., Bird T. D., De Jonghe P., Feely S. M., Shy M. E., Garbern J. Y., 2010. Missense mutations in the copper transporter gene ATP7A cause X-linked distal hereditary motor neuropathy. Am. J. Hum. Genet. 12, 343-52.
  • Knutson M., 2007. Steap proteins: implications for iron and copper metabolism. Nutr. Rev. 65, 335-340.
  • Kochanowska I., Hampel-Osipowicz E., Waloszczyk P., 2008. Choroba Menkesa - genetyczny defekt metabolizmu miedzi. Neurol. Dziec. 17, 33, 63-68.
  • Kodama H., Fujisawa C., Bhadhprasit W., 2011. Pathology, clinical features and treatments of congenital copper metabolic disorders - focus on neurologic aspects. Brain. Dev. 33, 243-251.
  • Kodama H., Fujisawa C., Bhadhprasit W., 2012. Inherited copper transport disorders: biochemical mechanisms, diagnosis, and treatment. Curr. Drug Metab. 13, 237-250.
  • Kreuder J., Otten A., Fuder H., Tümer Z., Tonnesen T., Horn N., Dralle D., 1993. Clinical and biochemical consequences of copper-histidine therapy in Menkes disease. Eur. J. Pediatr. 152, 828-832.
  • La Fontaine S., Ackland M. L., Mercer J. F., 2010. Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int. J. Biochem. Cell Biol. 42, 206-209.
  • Leary S., 2010. Redox regulation of SCO protein function: controlling copper at a mitochondrial crossroad. Antiox. Redox Signal. 13, 1403-1416.
  • Li X., Chen S., Wang Q., Zack D. J., Snyder S. H., Borjigin J., 1998. A pineal regulatory element (PIRE) mediates transactivation by the pineal/retina-specific transcription factor CRX. Proc. Natl. Acad. Sci. USA 95, 1876-1881.
  • Linz R., Barnes N. L., Zimnicka A. M., Kaplan J. H., Eipper B., Lutsenko S., 2008. Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atp7b-/- kidney. Am. J. Physiol. 294, F53-F61.
  • Lönnerdal B., 2008. Intestinal regulation of copper homeostasis: a developmental perspective. Am. J. Clin. Nutrit. 88, 846S-850S.
  • Lutsenko S., Gupta A., Burkhead J. L., Zuzel V., 2008. Cellular multitasking: the dual role of human Cu-ATPases in cofactor delivery and intracellular copper balance. Arch. Biochem. Biophys. 476, 22-32.
  • Lutsenko S., Barnes N. L., Bartee M. Y., Dmitriev O. Y., 2007a. Function and Regulation of Human Copper-Transporting ATPases. Physiol. Rev. 87, 1011-1046.
  • Lutsenko S., Leshane E.S., Shinde U., 2007b. Biochemical basis of regulation of human copper-transporting ATPases. Arch. Biochem. Biophys. 463, 134-148.
  • Lutsenko S., Bhattacharjee A., Hubbard A. L., 2010. Copper handling machinery of the brain. Metallomics 2, 596-608.
  • Maramatsu Y., Yamada T., Moralejo D. H., Suzuki Y., Matsumoto K., 1998. Fetal copper uptake and a homolog (Atp7b) of the Wilson's disease gene in rats. Res. Com. Molec. Pathol. Pharm. 101, 225-231.
  • Martinelli D., Dionisi-Vici C., 2014. AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann. NY Acad. Sci. 1314, 55-63.
  • Martinelli D., Travaglini L., Drouin C. A., Ceballos-Picot I., Rizza T., Bertini E., Carrozzo R., Petrini S., De Lonlay P., El Hachem M., Hubert L., Montpetit A., Torre G., Dionisi-Vici C., 2013. MEDNIK syndrome: a novel defect of copper metabolism treatable by zinc acetate therapy. Brain 136, 872-881.
  • Matak P., Zumerle S., Mastrogiannaki M., El Balkhi S., Delga S., Mathieu J. R., Canonne-Hergaux F., Poupon J., Sharp P. A., Vaulont S., Peyssonnaux C., 2013. Copper deficiency leads to anemia, duodenal hypoxia, upregulation of HIF-2α and altered expression of iron absorption genes in mice. PloS One, 8, e59538.
  • Mercer J. F., Livingston J., Hall B., Paynter J. A., Begy C., Chandrasekharappa S., Lockhart P., Grimes A., Bhave M., Siemieniak D., Glower T. W., 1993. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat. Genet. 3, 20-25.
  • Møller L. B., Mogensen M., Horn N., 2009. Molecular diagnosis of Menkes disease: genotype-phenotype correlation. Biochimie 91, 1273-1277.
  • Møller L. B., Lenartowicz M., Zabot M. T., Josiane A., Burglen L., Bennett C., Riconda D., Fisher R., Janssens S., Mohammed S., Ausems M., Tümer Z., Horn N., Jensen T. G., 2012. Clinical expression of Menkes disease in females with normal karyotype. Orphanet. J. Rare Dis. 22, 6.
  • Montpetit A., Côté S., Brustein E., Drouin C. A., Lapointe L., Boudreau M., Meloche C., Drouin R., Hudson T. J., Drapeau P., Cossette P., 2008. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLoS Genet. 4, e1000296.
  • Muller P. A., Klomp L. W., 2009. ATOX1: a novel copper-responsive transcription factor in mammals? Int. J. Biochem. Cell Biol. 41, 1233-1236.
  • Oshio T., Hino M., Kirino A., Matsumura C., Fukuda K., 1997. Urologic abnormalities in Menkes' kinky hair disease: report of three cases. J. Pediatr. Surg. 32, 782-784.
  • Palumaa P., 2013. Copper chaperones. The concept of conformational control in the metabolism of copper. FEBS Lett. 587, 1902-1910.
  • Petris M. J., Mercer J. F., 1999. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Molec. Genet. 8, 2107-2115.
  • Pinto F., Calderazzi A., Canapicchi R., Tadeucci G., Tarantino E., 1995. Radiological findings in a case of Menkes' disease. Child's Nerv. Syst. 11, 112-114.
  • Prohaska J. R., 1997. Neurological roles of copper as antioxidant or prooxidant. [W:] Metals and oxidative damage in neurological disorders. Connor J. R. (red.). Plenum Press, New Jork, 57-74.
  • Proud V. K., Mussell H. G., Kaler S. G., Young D. W., Percy A. K., 1996. Distinctive Menkes disease variant with occipital horns: delineation of natural history and clinical phenotype. Am. J. Med. Genet. 65, 44-51.
  • Roberts E. A., Schilsky M. L., 2008. Diagnosis and treatment of Wilson disease: an update. Hepatology 47, 2089-2111.
  • Saba T. G., Montpetit A., Verner A., Rioux P., Hudson T. J., Drouin R., Drouin C. A., 2005. An atypical form of erythrokeratodermia variabilis maps to chromosome 7q22. Hum. Genet. 116, 167-171.
  • Skjørringe T., Tümer Z., Møller L. B., 2011. Splice site mutations in the ATP7A gene. PLoS One 6, e18599.
  • Stiburek L., Zeman J., 2010. Assembly factors and ATP-dependent proteases in cytochrome c oxidase biogenesis. Biochim. Biophys. Acta 1797, 1149-1158.
  • Smith A. T., Smith K. P., Rosenzweig A. C., 2014. Diversity of the metal-transporting P1B-type ATPases. J. Biol. Inorg. Chem. (w druku).
  • Tapiero H., Townsend D. M., Tew K. D., 2003. Trace elements in human physiology and pathology. Copper Biomed. Pharmacother. 57, 386-398.
  • Telianidis J., Hung Y. H., Materia S., Fontaine S. L., 2013. Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis. Front. Aging Neurosci. 5, 1-17.
  • Thomas G. R., Roberts E. A., Walshe J. M., Cox D. W., 1995. Haplotypes and mutations in Wilson disease. Am. J. Hum. Genet. 56, 1315-1319.
  • Tümer Z., Horn N., Tonnesen T., Christodoulou J., Clarce J. T. R., Sarkar B., 1996. Early copper-histidine treatment for Menkes disease. Nat. Genet. 12, 11-12.
  • Tümer Z., 1998. Genetics of Menkes disease. J. Trace Elem. Exp. Med. 11, 147-16.
  • Tümer Z., 2013. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum. Mutat. 34, 417-429.
  • Tümer Z., Møller L. B., 2010. Menkes disease. Eur. J. Hum. Genet. 18, 511-518.
  • Voskoboinik I., Mar J., Camakaris J., 2003. Mutational analysis of the Menkes copper P-type ATPase (ATP7A). Biochem. Biophys. Res. Comm. 301, 88-94.
  • Van Den Berghe P. V., Klomp L. W., 2009. New developments in the regulation of intestinal copper absorption. Nutrition Rev. 67, 658-672.
  • Wang Y., Hodgkinson V., Zhu S., Weisman G. A., Petris M. J., 2011. Advances in the understanding of mammalian copper transporters. Adv. Nutrit. 2, 129-137.
  • Wee N. K. Y., Weinstein D. C., Fraser S. T., Assinder S. J., 2013. The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int. J. Biochem. Cell Biol. 45, 960-963.
  • Wijmenga C., Klomp L. W., 2004. Molecular regulation of copper excretion in the liver. Proc. Nutr. Soc. 63, 31-39.
  • Wu J., Forbes J. R., Chen H. S., Cox D. W., 1994. The LEC rat has a deletion in the copper transporting ATPase gene homologous to the Wilson disease gene. Nat. Genet. 7, 541-545.
  • Yi L., Donsante A., Kennerson M. L., Mercer J. F., Garbern J. Y., Kaler S. G., 2012. Altered intracellular localization and valosin-containing protein (p97 VCP) interaction underlie ATP7A-related distal motor neuropathy. Hum. Mol. Genet. 21, 1794-1807.
  • Yi L., Kaler S., 2014. ATP7A trafficking and mechanisms underlying the distal motor neuropathy induced by mutations in ATP7A. Ann. NY Acad. Sci. 1314, 49-54.
  • Zheng W., Monnot A., 2012. Regulation of brain iron and copper homeostasis by brain barrier systems: implication in neurodegenerative diseases. Pharmacol. Therapeut. 133, 177-188.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p395kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.