PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 63 | 3 | 387-393
Article title

"Żelazne serce" - co wiemy, a czego nie wiemy?

Content
Title variants
EN
Iron heart - what do we know and what don't we know?
Languages of publication
PL EN
Abstracts
PL
Gospodarka żelazowa odgrywa fundamentalną rolę w homeostazie organizmu. Niedobór żelaza jest najczęstszym niedoborem pokarmowym na świecie i dotyczy około 1/3 populacji ogólnej, a u osób starszych i ze schorzeniami przewlekłymi jest jeszcze częstszy. Stąd zaburzenia gospodarki żelazowej prowadzą do dysfunkcji w obrębie wszystkich hematopoetycznych linii komórkowych (erytrocytów, komórek odpowiedzi immunologicznej i trombocytów), ale także wiążą się z upośledzeniem funkcjonowania m.in. kardiomiocytów czy miocytów mięśni szkieletowych zużywających znaczne ilości energii. Istnieje wiele nurtujących pytań w obszarze roli żelaza w patogenezie i progresji niewydolności serca. Choć męczliwości mięśni szkieletowych i nietolerancji wysiłku fizycznego w niewydolności serca towarzyszy niedobór żelaza, a suplementacja żelaza takim chorym poprawia funkcję mięśni szkieletowych, niejasne są dokładne mechanizmy tłumaczące te obserwacje kliniczne.
EN
Iron metabolism is fundamental for homeostasis of the whole organism. Iron deficiency is the most common nutritional deficiency worldwide that affects more than one-third of the global population, with the highest prevalence in older people and those with chronic diseases. Deregulation of iron metabolism leads to dysfunction not only in all of haematopoetic cell lines (erythrocytes, cells involved in immune response and thrombocytes), but also in cells of high energy demand, such as cardiomyocytes and skeletal myocytes. There are many issues that still need to be addressed in the field of pathogenesis and progression of heart failure. Although skeletal muscle fatigability and exercise intolerance in heart failure is assisted by iron deficiency, and iron supplementation improves muscle function, the exact mechanisms of these clinical observations remain unclear however.
Keywords
Journal
Year
Volume
63
Issue
3
Pages
387-393
Physical description
Dates
published
2014
Contributors
  • Zakład Immunologii Nowotworów, Instytut Immunologii i Terapii Doświadczalnej im. Ludwika Hirszfelda PAN we Wrocławiu, Rudolfa Weigla 12, 53-114 Wrocław, Polska
  • Studenckie Koło Naukowe przy Samodzielnej Pracowni Badań Układu Krążenia, Katedra i Klinika Chorób Serca, Uniwersytet Medyczny we Wrocławiu, Wrocław, Polska
author
  • Studenckie Koło Naukowe przy Samodzielnej Pracowni Badań Układu Krążenia, Katedra i Klinika Chorób Serca, Uniwersytet Medyczny we Wrocławiu, Wrocław, Polska
  • Ośrodek Chorób Serca, Klinika Kardiologii, Wojskowy Szpital Kliniczny z Polikliniką we Wrocławiu, Wrocław, Polska
  • Ośrodek Chorób Serca, Klinika Kardiologii, Wojskowy Szpital Kliniczny z Polikliniką we Wrocławiu i Katedra, Wrocław, Polska
author
  • Ośrodek Chorób Serca, Klinika Kardiologii, Wojskowy Szpital Kliniczny z Polikliniką we Wrocławiu, Wrocław, Polska
References
  • Anderson G. J., Vulpe C. D., 2009. Mammalian iron transport. Cell Mol. Life Sci. 66, 3241-3261.
  • Andrews N. C., 1999. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986-1995.
  • Anker S. D., Comin Colet J., Filippatos G. i współaut., 2009. Ferric carboxymaltose in patients with heart failure and iron deficiency. N. Engl. J. Med. 361, 2436-2448.
  • Babitt J. L., Lin H. Y., 2010. Molecular mechanisms of hepcidin regulation: implications for the anemia of CKD. Am. J. Kidney Dis. 55, 726-741.
  • Beard J. L., 2001. Iron biology in immune function, muscle metabolism and neuronal functioning. J. Nutr. 131, 568S-579S.
  • Cairo G., Bernuzzi F., Recalcati S., 2006. A precious metal: Iron, an essential nutrient for all cells. Genes Nutr. 1, 25-39.
  • Camaschella C., Pagani A., 2010. Iron and erythropoiesis: a dual relationship. Int. J. Hematol. 93, 21-26.
  • Dunn L. L., Suryo Rahmanto Y., Richardson D. R., 2007. Iron uptake and metabolism in the new millennium. Trends Cell Biol. 17, 93-100.
  • Filippatos G., Farmakis D., Colet J. C. i współaut., 2013. Intravenous ferric carboxymaltose in iron-deficient chronic heart failure patients with and without anaemia: a subanalysis of the FAIR-HF trial. Eur. J. Heart Fail. 15, 1267-1276.
  • Franchini M., Montagnana M., Lippi G., 2010. Hepcidin and iron metabolism: from laboratory to clinical implications. Clin. Chim. Acta 411, 1565-1569.
  • Gale E., Torrance J., Bothwell T., 1963. The quantitative estimation of total iron stores in human bone marrow. J. Clin. Invest. 42,1076-1082.
  • Goodnough L. T., Nemeth E., Ganz T., 2010. Detection, evaluation, and management of iron-restricted erythropoiesis. Blood 116, 4754-4761.
  • Hentze M. W., Muckenthaler M. U., Galy B., Camaschella C., 2010. Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24-38.
  • Hower V., Mendes P., Torti F. M. i współaut., 2009. A general map of iron metabolism and tissue-specific subnetworks. Mol. Biosyst. 5,422-443.
  • Jankowska E. A., Rozentryt P., Witkowska A. i współaut., 2010. Iron deficiency: an ominous sign in patients with systolic chronic heart failure. Eur. Heart J. 31, 1872-1880.
  • Jankowska E. A., Rozentryt P., Witkowska A., Nowak J., Hartmann O. i współaut., 2011. Iron deficiency predicts impaired exercise capacity in patients with systolic chronic heart failure. J. Card Fail. 17, 899-906.
  • Jankowska E. A., von Haehling S., Anker S. D., Macdougall I. C., Ponikowski P., 2013a. Iron deficiency and heart failure: diagnostic dilemmas and therapeutic perspectives. Eur. Heart J. 34, 816-829.
  • Jankowska E. A., Malyszko J., Ardehali H., Koc-Zorawska E., Banasiak W. i współaut., 2013b. Iron status in patients with chronic heart failure. Eur. Heart J. 34, 827-834.
  • Jankowska E. A., Kasztura M., Sokolski M. i współaut., 2014. Iron deficiency defined as depleted iron stores accompanied by unmet cellular iron requirements identifies patients at the highest risk of death after an episode of acute heart failure. Eur Heart J. (w druku).
  • Kell D. B., 2009. Iron behaving badly: inappropriate iron chelation as a major contributor to the aetiology of vascular and other progressive inflammatory and degenerative diseases. BMC Med. Genomics 8, 2.
  • Kemna E. H., Tjalsma H., Willems H. L., Swinkels D. W., 2008. Hepcidin: from discovery to differentia diagnosis. Haematologica 93, 90-97.
  • Klip I. T., Comin-Colet J., Voors A. A. i współaut., 2013. Iron deficiency in chronic heart failure: an international pooled analysis. Am. Heart J. 165, 575-582.
  • Koulaouzidis A., Said E., Cottier R., Saeed A. A., 2009. Soluble transferrin receptors and iron deficiency, a step beyond ferritin. A systematic review. J. Gastrointestin. Liver Dis. 18, 345-352.
  • McMurray J. J., Adamopoulos S., Anker S. D. i współaut., 2012. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur. J. Heart Fail. 14, 803-869.
  • Nemeth E., 2008. Iron regulation and erythropoiesis. Curr. Opin. Hematol. 15, 169-175.
  • Pasricha S. R., Flecknoe-Brown S. C., Allen K. J. i współaut., 2010. Diagnosis and management of iron deficiency anaemia: a clinical update. Med. J. Aust. 193, 525-532.
  • Skikne B. S., 2008. Serum transferrin receptor. Am. J. Hematol. 83, 872-885.
  • Wish J. B., 2006. Assessing iron status: beyond serum ferritin and transferrin saturation. Clin. J. Am. Soc. Nephrol. 1 (Suppl 1), S4-S8.
  • Zimmermann M. B., Hurrell R. F., 2007. Nutritional iron deficiency. Lancet 370, 511-520.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv63p387kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.