Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 63 | 3 | 299-308

Article title

Metabolizm żelaza - stan wiedzy 2014

Content

Title variants

EN
Iron metabolism - state of the art 2014

Languages of publication

PL EN

Abstracts

PL
Żelazo jest biometalem występującym w dwóch głównych stopniach utlenienia - Fe(II) i Fe(III). O wykorzystaniu żelaza przez organizmy żywe zadecydowała szeroka rozpiętość potencjału oksydoredukcyjnego tego metalu, możliwa dzięki zmiennym interakcjom z wiążącymi go ligandami oraz udział w reakcjach przeniesienia elektronu. Żelazo występuje w centrach aktywnych wielu enzymów katalizujących różnorodne reakcje, stanowiące podłoże kluczowych procesów metabolicznych takich jak fosforylacja oksydacyjna, synteza DNA, obróbka micro RNA, transport tlenu. Z drugiej strony, żelazo jest toksyczne poprzez udział w reakcji Fentona, w której powstaje rodnik wodorotlenkowy, utleniacz niszczący struktury komórkowe. Komórkowa homeostaza żelaza polega na dostarczeniu tego metalu do podstawowych procesów biochemicznych, w których uczestniczy oraz na ograniczeniu jego udziału w reakcji Fentona. Obrót żelaza w komórce pozostaje głównie pod kontrolą cytoplazmatycznych białek IRP1 i IRP2 wiążących się z RNA, które koordynują syntezę białek uczestniczących w komórkowym transporcie żelaza, jego magazynowaniu i metabolicznym użyciu. Ogólnoustrojowa równowaga żelaza opiera się w dużej mierze na osi regulatorowej pomiędzy hepcydyną, peptydem syntetyzowanym głównie w hepatocytach oraz ferroportyną, białkiem transportującym żelazo z komórek. Funkcjonowanie tej osi zapewnia prawidłową dystrybucję i obrót żelaza między absorpcyjnymi enterocytami, makrofagami układu siateczkowo-śródbłonkowego oraz prekursorami czerwonych krwinek. Artykuł podsumowuje najważniejsze odkrycia z ostatnich 15 lat, które okazały się kluczowe dla zrozumienia homeostazy żelaza.
EN
Iron is biometal, existing in two main oxidation states, i.e. Fe(II)/Fe(III). The extensive range of redox potential available to this metal by varying its interactions with coordinating ligands, as well as its capacity to participate in one-electron transfer reactions, are the reasons why iron is essential for almost all living organisms. Iron is found in the active sites of a large number of enzymes that catalyze diverse redox reactions underlying fundamental metabolic processes, including respiratory oxidation, DNA synthesis, microRNA processing and oxygen transport. On the other hand, iron is toxic due to its capacity to catalyze via Fenton reaction the production of hydroxyl radical, a highly destructive oxidant. Cellular iron homeostasis consists in providing iron for a variety of biochemical processes and in limiting iron availability for Fenton reaction. Cellular iron homeostasis is mainly controlled by the iron regulatory proteins (IRP1 and IRP2) - two cytoplasmic RNA-binding proteins involved in the mechanisms that coordinate the synthesis of a number of key proteins responsible for cellular iron transport, storage and utilization. Systemic iron balance is largely based on a regulatory axis between the liver-derived peptide hepcidin and the iron exporter ferroportin proved to be fundamental for the coordination of iron fluctuations in the body and its distribution among the main sites of iron metabolism such as absorptive enterocytes, reticuloendothelial macrophages, hepatocytes and erythroid precursors of red blood cells. The article briefly resumes main discoveries within last 15 years, critical for the understanding iron homeostasis.

Keywords

Journal

Year

Volume

63

Issue

3

Pages

299-308

Physical description

Dates

published
2014

Contributors

  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 36A, 05-552 Magdalenka, Polska
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 36A, 05-552 Magdalenka, Polska
author
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 36A, 05-552 Magdalenka, Polska
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 36A, 05-552 Magdalenka, Polska
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 36A, 05-552 Magdalenka, Polska

References

  • Anderson G. J., Frazer D. M., Mckie A. T., Vulpe C. D., Smith A., 2005. Mechanisms of haem and non-haem iron absorption: lessons from inherited disorders of iron metabolism. Biometals 18, 339-348.
  • Andrews N. C., 1999. The iron transporter DMT1. Int. J. Biochem. Cell. Biol. 31, 991-994.
  • Andrews N. C., 2007. When is a heme transporter not a heme transporter? When it's a folate transporter. Cell Metab. 5, 5-6.
  • Artym J., 2008. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Post. Hig. Med. Dosw. 62, 599-612.
  • Artym J., 2013. Laktoferyna - niezwykłe białko. Wydawnictweo Borgis Sp. z o.o.
  • Beaumont C., 2010. Multiple regulatory mechanisms act in concert to control ferroportin expression and heme iron recycling by macrophages. Haematologica 95, 1233-1236.
  • Blachier F., Vaugelade P., Robert V., Kibangou B., Canonne-Hergaux F., Delpal S., Bureau F., Blottière H., Bouglé D., 2007. Comparative capacities of the pig colon and duodenum for luminal iron absorption. Can. J. Physiol. Pharmacol. 85, 185- 192.
  • Castoldi M., Vujic-Spasic M., Altamura S., Elmén J., Lindow M., Kiss J., Stolte J., Sparla R., D'alessandro L. A., Klingmüller U., Fleming R. E., Longerich T., Gröne H. J., Benes V., Kauppinen S., Hentze M. W., Muckenthaler M. U., 2011. The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. J. Clin. Invest. 121, 1386-1396.
  • De Domenico I., Ward D. M., Langelier C., Vaughn M. B., Nemeth E., Sundquist W. I., Ganz T., Musci G., Kaplan J., 2007a. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell. 18, 2569-2578.
  • De Domenico I., Ward D. I., Patti M. C., Jeong S. Y., David S., Musci G., Kaplan J., 2007b. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007 26, 2823-2831.
  • Desuzinges-Mandon E., Arnaud O., Martinez L., Huché F., Di Pietro A., Falson P,. 2010. ABCG2 transports and transfers heme to albumin through its large extracellular loop. J. Biol. Chem. 285, 33123-33133.
  • Epstein A. C., Gleadle J. M., Mcneill L. A., Hewitson K. S., O'rourke J., Mole D. R., Mukherji M., Metzen E., Wilson M. I., Dhanda A., Tian Y. M., Masson N., Hamilton D. L., Jaakkola P., Barstead R., Hodgkin J., Maxwell P. H., Pugh C. W., Schofield C. J., Ratcliffe P. J., 2001. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107, 43-54.
  • Folgueras A. R., De Lara F. M., Pendás A. M., Garabaya C., Rodríguez F., Astudillo A., Bernal T., Cabanillas R., López-Otín C., Velasco G., 2008. Membrane-bound serine protease matriptase-2 (Tmprss6) is an essential regulator of iron homeostasis. Blood 112, 2539-2545.
  • Furuyama K., Kaneko K., Vargas P. D., 2007. Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J. Exp. Med. 213, 1-16.
  • Galy B., Ferring-Appel D., Kaden S., Gröne H. J., Hentze M. W., 2008. Iron regulatory proteins are essential for intestinal function and control key iron absorption molecules in the duodenum. Cell Metab. 7, 79-85.
  • Galy B., Ferring-Appel D., Becker C., Gretz N., Gröne H. J., Schümann K., Hentze M. W., 2013. Iron regulatory proteins control a mucosal block to intestinal iron absorption. Cell Rep. 3, 844-857.
  • Ganz T., 2005. Cellular iron: ferroportin is the only way out. Cell Metab.1, 155-157.
  • Ganz T., Nemeth E., 2012. Hepcidin and iron homeostasis. Biochim. Biophys. Acta 1823, 1434-1443.
  • Gonzalez-Rosendo G., Polo J., Rodriguez-Jerez J. J., Puga-Diaz R., Reyes-Navarrete E. G., Quintero-Gutierrez A. G., 2010. Bioavailability of a heme-iron concentrate product added to chocolate biscuit filling in adolescent girls living in a rural area of Mexico. J. Food Sci. 75, H73-H78.
  • Guo B., Yu Y., Leibold E. A., 1994. Iron regulates cytoplasmic levels of a novel iron-responsive element-binding protein without aconitase activity. J. Biol. Chem. 269, 24252-24260.
  • Hanson L. H., Sawicki V., Lewis A., Nuijens J. H., Neville M. C., Zhang P., 2001. Does human lactoferrin in the milk of transgenic mice deliver iron to suckling neonates? Adv. Exp. Med. Biol. 501, 233-239.
  • Harrison P. M., Arosio P., 1996. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim. Biophys. Acta 1275, 161-203.
  • Hentze M. W., Muckenthaler M. U., Galy B., Camaschella C., 2010. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24-38.
  • Kakhlon O., Cabanthik Z. I., 2002 The labile iron pool: characterization, measurement, and participation in cellular processes. Free Radic. Biol. Med. 33, 1037-1046.
  • Khan A. A., Quigley J. G., 2013. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol. Aspects Med. 34, 669-682.
  • Korolnek T., Hamza I. 2014. Like iron in the blood of the people: the requirement for heme trafficking in iron metabolism. Front. Pharmacol. 126, 1-13.
  • Krause A., Neitz S., Mägert H. J., Schulz A., Forssmann W. G., Schulz-Knappe P., Adermann K., 2000. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147-50.
  • Kruszewski M., 2003. Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat. Res. 531, 81-92.
  • Liao Y., Lopez V., Shafizadeh T. B., Halsted C. H., Lönnerdal B., 2007. Cloning of a pig homologue of the human lactoferrin receptor: expression and localization during intestinal maturation in piglets. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148, 584-590.
  • Lipiński P., Styś A., Starzyński R. R., 2013. Molecular insights into the regulation of iron metabolism during the prenatal and early postnatal periods. Cell. Mol. Life. Sci. 70, 23-38.
  • Mastrogiannaki M., Matak P., Keith B., Simon M. C., Vaulont S., Peyssonnaux C., 2009. HIF-2alpha, but not HIF-1alpha, promotes iron absorption in mice. J. Clin. Invest. 119, 1159-1166.
  • Mckie A. T., Barrow D., Latunde-Dada G. O., Rolfs A., Sager G., Mudaly E., Mudal M., Richardson C., Barlow D., Bomford A., Peters T. J., Raja K. B., Shirali S., Hediger M. A., Farzaneh F., Simpson R. J., 2001. An iron regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755-1759.
  • Meyron-Holtz E. G., Ghosh M. C., Iwai K., Lavaute T., Brazzolotto X., Berger U. V., Land W., Ollivierre-Wilson H., Grinberg A., Love P., Rouault T. A., 2004. Genetic ablations of iron regulatory proteins 1 and 2 reveal why iron regulatory protein 2 dominates iron homeostasis. EMBO J. 23, 386-395.
  • Mueller S., 2005. Iron regulatory protein 1 as a sensor of reactive oxygen species. Biofactors 24, 171-181.
  • Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J., 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090-2093.
  • Nicolas G., Bennoun M., Devaux I., Beaumont C., Grandchamp B., Kahn A., Vaulont S., 2001. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad. Sci. USA 98, 8780-8785.
  • Pigeon C., Ilyin G., Courselaud B., Leroyer P., Turlin B., Brissot P., Loréal O., 2001. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811-7819.
  • Ponka P., 1999. Cell biology of heme. Am. J. Med. Sci. 318, 241-256.
  • Ponka P., Lok C. N., 1999.The transferrin receptor: role in health and disease. Int. J. Biochem. Cell. Biol. 31, 1111-1137.
  • Quintero-Gutierrez A. G., Gonzalez-Rosendo G., Sanchez-Munoz J., Polo-Pozo J., Rodriguez-Jerez J. J., 2008. Bioavailability of heme iron in biscuit filling using piglets as an animal model for humans. Int. J. Biol. Sci. 4, 58-62.
  • Rouault T. A., 2006. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406-414.
  • Salahudeen A. A., Thompson J. W., Ruiz J. C., Ma H. W., Kinch L. N., Li Q., Grishin N. V., Bruick R. K., 2009. An E3 ligase possessing an iron-responsive hemerythrin domain is a regulator of iron homeostasis. Science 326, 722-726.
  • Sanchez M., Galy B., Muckenthaler M. U., Hentze M. W., 2007. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat. Struct. Mol. Biol. 14, 420-426.
  • Sangokoya C., Doss J. F., Chi J. T., 2013. Iron-responsive miR-485-3p regulates cellular iron homeostasis by targeting ferroportin. PLoS Genet. 9, e1003408.
  • Shaw G. C., Cope J. J., Li L., Corson K., Hersey C., Ackermann G. E., Gwynn B., Lambert A. J., Wingert R. A., Traver D., Trede N. S., Barut B. A., Zhou Y., Minet E., Donovan A., Brownlie A., Balzan R., Weiss M. J., Peters L. L., Kaplan J., Zon L. I., Paw B. H., 2006. Mitoferrin is essential for erythroid iron assimilation. Nature 440, 96-100.
  • Shayeghi M., Latunde-Dada G. O., Oakhill J. S., Laftah A. H., Takeuchi K., Halliday N., Khan Y., Warley A., Mccann F. E., Hider R. C., Frazer D. M., Anderson G. J., Vulpe C. D., Simpson R. J., Mckie A. T., 2005. Identification of an intestinal hemetransporter. Cell 122, 789-801.
  • Shi H., Bencze K., Z., Stemmler T., L., Philpott C., 2008. A cytosolic iron chaperone that delivers iron to ferritin. Science 320, 1207-1210.
  • Sikorska K., Bielawski K.P., Romanowski T., Stalke P., 2006. Hereditary hemochromatosis: the most frequent inherited human disease. Post. Hig. Med. Dosw. 60, 667-676.
  • Starzyński R. R., Lipiński P., 2003. IRP1, białko kontrolujące homeostazę żelaza komórkach ssaków: regulacja jego aktywności przez jony żelaza i tlenek azotu. Post. Biol. Kom. 30, 497-514.
  • Styś A., Galy, B., Starzyński R.R., Smuda E., Drapier J.C., Lipiński P., Bouton C., 2011. Iron regulatory protein 1 outcompetes iron regulatory protein 2 in regulating cellular iron homeostasis in response to nitric oxide. J. Biol. Chem. 286, 22846-22854.
  • Suzuki Y.A., Shin K., Lönnerdal B., 2001. Molecular cloning and functional expression of a human intestinal lactoferrin receptor. Biochemistry 40, 15771-15779.
  • Vashisht A. A., Zumbrennen K. B., Huang X., Powers D. N., Durazo A., Sun D., Bhaskaran N., Persson A., Uhlen M., Sangfelt O., Spruck C., Leibold E. A., Wohlschlegel J. A., 2009. Control of iron homeostasis by an iron-regulated ubiquitin ligase. Science 326, 718-721.
  • Viatte L., Vaulont S., 2009. Hepcidin, the iron watcher. Biochimie 91, 1223-1228.
  • Volz K., 2008. The functional duality of iron regulatory protein 1. Curr. Opin. Struct. Biol. 18, 106-111.
  • West A. R., Oates P. S., 2008. Mechanisms of heme iron absorption: current questions and controversies. World J. Gastroenterol. 14, 4101-4110.
  • Young M. F., Griffin I., Pressman E., Mcintyre A. W., Cooper E., Mcnanley T., Harris Z. L., Westerman M., O'brien K. O., 2010. Utilization of iron from an animal-based iron source is greater than that of ferrous sulfate in pregnant and non-pregnant women. J. Nutr. 140, 2162-2166.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv63p299kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.