PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 63 | 1 | 25-35
Article title

Ektoina - przeciwstresowa cząsteczka przyszłości

Content
Title variants
EN
Ectoine - anti-stress molecule of the future
Languages of publication
PL EN
Abstracts
PL
Mikroorganizmy występują zarówno w środowiskach glebowych, jak i w ekstremalnych, m.in. w słonych jeziorach oraz kopalniach węgla czy soli. Przetrwanie w tak niekorzystnych warunkach umożliwia im obecność jednego z osmoprotektantów - ektoiny. Związek ten zapobiega utracie wody z komórek, reguluje ich turgor, nie zakłócając metabolizmu. Ektoina syntetyzowana jest przez mikroorganizmy w celu ochrony przed różnego rodzaju stresem środowiskowym, np. promieniowaniem UV lub wysoką temperaturą. Ektoina jest rzadkim aminokwasem, kwasem 1,4,5,6-tetrahydro-2-metylo-4-pyrimidyno karboksylowym o charakterze amfoterycznym. W dzisiejszych czasach znalazła szerokie zastosowanie w różnych gałęziach przemysłu. Rosnące zapotrzebowanie handlowe na ektoinę doprowadziło do szeregu działań zwiększających wydajność naturalnej biosyntezy w porównaniu do technologii chemicznych. Wśród wielu zastosowań ektoiny bardzo istotne jest wykorzystanie w medycynie. gdzie stosowana jest w celu ochrony zdrowych komórek podczas chemio- i radioterapii. Duże znaczenie posiada również w kosmetyce, gdzie dodawana jest do kremów nawilżających i produktów chroniących skórę przed promieniowaniem UV i efektem przedwczesnego foto-starzenia skóry. W biologii molekularnej wykorzystywana jest do termostabilizacji enzymów i kwasów nukleinowych, kompleksów białek-DNA i całych komórek.
EN
Microorganisms occur in soil environments as well as in extreme environments, such as saline lakes, coal and salt mines. Their survival under unfavorable conditions is possible due to the presence of an osmoprotectant - ectoine. This compound prevents the cells from water loss and regulates their turgor without disturbing their metabolism. Ectoine is synthesized by microorganisms, in order to protect them against various types of environmental stresses such as UV radiation or heat stress. Ectoine is a rare aminoacid, 1,4,5,6-tetrahydro-2-methyl-4-pyrimidinecarboxylic acid of amphoteric character. Nowadays ectoine has found wide applications in different branches of the industry. The increasing demand for ectoine led to a number of actions enhancing an efficiency of its biosynthesis compared to chemical technologies. Ectoine is commonly used in medicine to protect healthy cells during chemotherapy and radiotherapy. It is also a very important compound in cosmetics as the component of moisturizers and products used for skin protection against UV radiation and prevention from its early photoaging. In molecular biology it is used for thermal stabilization of enzymes and nucleic acids, protein-DNA complexes and whole cells.
Keywords
Journal
Year
Volume
63
Issue
1
Pages
25-35
Physical description
Dates
published
2014
References
  • Andersson M. M., Breccia J. D., Hatti-Kaul R., 2000. Stabilizing effect of chemical additives against oxidation of lactate dehydrogenase. Biotechnol. Appl. Biochem. 32, 145-153.
  • Arora A., Ha C., Park C. B., 2004. Inhibition of insulin amyloid formation by small stress molecules. FEBS Lett. 564, 121-125.
  • Barth S., Huhn M., Matthey B., Klimka A., Galinski E. A., Engert A., 2000. Compatible-solutesupported periplasmic expression of functional recombinant proteins under stress conditions. Appl. Environ. Microbiol. 66, 1572-1579.
  • Bernal V., Sevilla A., Canovas M., Iborra J. L., 2007. Production of L-carnitine by secondary metabolism of bacteria. Microb. Cell Fact. 6, 31.
  • Botta C., Di Giorgio C., Sabatier A.S., De Meo M., 2008. Genotoxicity of visible light (400-800 nm) and photoprotection assessment of ectoin, L-ergothioneine and mannitol and four sunscreens. J. Photochem. Photobiol. 91, 24-34.
  • Bunger J., 1999. Ectoine added protection and care for the skin. Euro Cosmet. 7, 22-24.
  • Canovas M., Maiquez J., De Diego T., Buendia B., Espinosa G., Iborra J. L., 2003. Membrane cell retention systems for continuous production of L-carnitine using Proteus sp. J. Membr. Sci. 214, 101-111.
  • Cath T. Y., Childress A. E., Elimelech M., 2006. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70-87.
  • Dötsch A., Severin J., Alt W., Galiński A. E., Kreft J. U., 2008. A mathematical model for growth and osmoregulation in halophilic bacteria. Microbiology 154, 2956-2969.
  • Empadinhas N., Da Costa M. S., 2008. Osmoadaptation mechanisms in prokaryotes: distribution of compatible solutes. Int. Microbiol. 11, 151-161.
  • Fallet C., Rohe P., Franco-Lara E., 2010. Process optimization of the integrated synthesis and secretion of ectoine and hydroxyectoine under hyper/hypo osmotic stress. Biotechnol. Bioengin. 107, 124-133.
  • Furusho K., Yoshizawa T., Shoji S., 2005. Ectoine alters subcellular localization of inclusions and reduces apoptotic cell death induced by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Disease 20, 170-178.
  • Galiński A. E., 1993. Compatible solutes of halophilic eubacteria: molecular principles, watersolute interaction, stress protection. Cell. Mol. Life Sci. 49, 487-496.
  • Galiński A. E., Pfeiffer H., Truper G. H., 1985. 1,4,5,6-Terrahydro-2-methyl-4-pyrimidinecarboxylic acid Anovel cyclic amino acid from halophilic phototrophic bacteria of the genus Ectothiorhodospira. Eur. J. Biochem. 149, 135-139.
  • Galiński A. E., Stein M., Amendt B., Kinder M., 1997. The kosmotropic (structure-forming) effect of compensatory solutes. Comp. Biochem. Physiol. Part A, Physiol. 117, 357-365.
  • Graf R., Anzali S., Buenger J., Pfluecker F., Driller H., 2008. The multifunctional role of ectoine as a natural cell protectant. Clin. Dermatol. 26, 326-333.
  • Guzman H., Van-Thuoc D., Martin J., Hatti-Kaul R., Quillaguaman J., 2009. A process for the production of ectoine and poly(3-hydroxybutyrate) by Halomonas boliviensis. A ppl. Microbiol. Biotechnol. 84, 1069-1077.
  • Hagemann M., 2011. Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol. Rev. 35, 87-123.
  • Hai T., Oppermann-Sanio F. B., Steinbuchel A., 2002. Molecular characterization of a thermostable cyanophycin synthetase from the thermophilic cyanobacterium Synechococcus sp. strain MA19 and in vitro synthesis of cyanophycin and related polyamides. Appl. Environ. Microbiol. 68, 93-101.
  • Heermann R., Jung K., 2004. Structural features and mechanisms for sensing high osmolarity in microorganisms. Curr. Opin. Microbiol. 7, 168-174.
  • Jakubowska A., 2012, Wiązanie jonów na granicy faz oraz specyficzne efekty jonowe. Wiadomości Chemiczne 66, 3-4.
  • Kanapathipillai M., Ku S. H., Girigoswami K., Park C. B., 2008. Small stress molecules inhibit aggregation and neurotoxicity of prion peptide 106-126. Biochem. Biophys. Res. Commun. 365, 808-813.
  • Knapp S., Ladenstein R., Galiński A. E., 1999. Extrinsic protein stabilization by the naturally occurring osmolytes beta-hydroxyectoine and betaine. Extremophiles 3, 191-198.
  • Kuhlmann A. U., Bremer E., 2002. Osmotically regulated synthesis of the compatible solute ectoine in Bacillus pasteurii and related Bacillus spp. Appl. Environ. Microbiol. 68, 772-783.
  • Lentzen G., Schwarz T., 2006. Extremolytes: natural compounds from extremophiles for versatile applications. Appl. Microbiol. Biotechnol. 72, 623-634.
  • Louis P., Galiński E. A., 1997. Characterization of genes for the biosynthesis of the compatible solute ectoine from Marinococcus halophilus and osmoregulated expression in Escherichia coli. Microbiology 143, 1141-1149.
  • Louis P., Trüper H. G., Galiński E. A., 1994. Survival of Escherichia coli during drying and storage in the presence of compatible solutes. Appl. Microbiol. Biotechnol. 41, 684-688.
  • Mascellani N., Liu X., Rossi S., Marchesini J., Valentini D., Arcelli D., Taccioli C., Citterich M. H., Liu C. G., Evangelisti R., Russo G., Santos J. M., Croce C. M., Volinia S., 2007. Compatible solutes from hyperthermophiles improve the quality of DNA microarrays. BMC Biotechnology 7, 82.
  • Moelbert S., Normand B., Rios P., 2004. Kosmotropes and chaotropes: modelling, preferential exclusion, binding and aggregate stability. Biophys. Chem. 112, 45-57.
  • Pastor J. M., Salvador M., Argandoña M., Bernal V., Reina-Bueno M. L. Csonka N., Iborra J. L., Vargas C., Nieto J. J., Cánovas M., 2010. Ectoines in cell stress protection: Uses and biotechnological production. Biotechnol. Adv. 28, 782-801.
  • Prabhu J., Schauwecker F., Grammel N., Keller U., Bernhardt M., 2004. Functional expression of the ectoine hydroxylase gene (thpD) from Streptomyces chrysomallus in Halomonas elongata. Appl. Environ. Microbiol. 70, 3130-3132.
  • Pul U., Wurm R., Wagner R., 2007. The role of LRP and H-NS in transcription regulation: involvement of synergism. J. Mol. Biol. 366, 900-915.
  • Reshetnikov A. S., Khmelenina V. N., Mustakhimov I. I., Kalyuzhnaya M., Lidstrom M., Trotsenko Y. A., 2011. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria. Extremophiles 15, 653-663.
  • Reuter K., Pittelkow M., Bursy J., Heine A., Craan T., Bremer E., 2010. Synthesis of 5-hydroxyectoine from ectoine: crystal structure of the non-heme iron(II) and 2-oxoglutarate-dependent dioxygenase EctD. PLOS ONE 5, 1-10.
  • Riesenberg D., Guthke R., 1999. High-cell-density cultivation of microorganisms. A ppl. Microbiol. Biotechnol. 51, 422-430.
  • Roberts M. F., 2005. Organic compatible solutes of halotolerant and halophilic microorganisms. Saline Systems 1, 5.
  • Schnoor M., Voss P., Cullen P., Boking T., Galla H. J., Galiński A. E., Lorkowski S., 2004. Characterization of the synthetic compatible solute homoectoine as a potent PCR. Biochem. Biophys. Res. Commun. 322, 867-872.
  • Schwibbert K., Marin-Sanguino A., Bagyan I., Heidrich G., Lentzen G., Seitz H., Rampp M., Schuster S. C., Klenk H. P., Pfeiffer F., Oesterhelt D., Kunte H. J., 2011. A blueprint of ectoine metabolism from the genome of the industrial producer Halomonas elongata DSM 2581T. Environ. Microbiol. 13, 1973-1994.
  • Shiloach J., Fass R., 2005. Growing E. coli to high cell density - a historical perspective on method development. Biotechnol. Adv. 23, 345-357.
  • Sydlik U., Gallitz I., Albrecht C., Abel J., Krutmann J., Unfried K., 2009. The compatible solute ectoine protects against nanoparticle-induced neutrophilic. Am. J. Respir. Crit. Care Med. 180, 29-35.
  • Trotsenko Y. A., Reshetnikov A. S., Khmelenina V. N., 2005. Characterization of the ectoine biosynthesis genes of haloalkalotolerant obligate methanotroph 'Methylomicrobium alcaliphilum 20Z'. Arch. Microbiol. 184, 286-297.
  • Van-Thuoc D., Guzman H., Guillaguaman J., Hatti-Kaul R., 2010, High productivity of ectoines by Halomonas boliviensis using a combined two-step fed-batch culture and mil king process. J. Biotechnol. 147, 46-51.
  • Van-Thuoc D., Guzman H., Thi-Hang M., Hatti-Kaul R., 2009. Ectoine production by Halomonas boliviensis: optimization using response surface methodology. Marine Biotechnol. 12, 586-593.
  • Wei L., Wedeking A., Buttner R., Kalff J.C., Tolba R. H., Van Echten-Deckert G., 2009. A natural tetrahydropyrimidine protects small bowel from cold ischemia and subsequent warm in vitro reperfusion injury. Pathobiology 76, 212-220.
  • Yu I., Nagaoka M., 2004, Slowdown of water diffusion around protein in aqueous solution with ectoine. Chem. Phys. Lett. 388, 316-321.
  • Zhang L., Wang Y., Zhang C., Wang Y., Zhu D., Wang C., Nagata S., 2006. Supplementation effect of ectoine on thermostability of phytase. J. Biosci. Bioeng. 102, 560-563.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv63p25kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.