PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 63 | 2 | 211-222
Article title

Zanieczyszczenie środowiska światłem jako jedna z przyczyn chorób cywilizacyjnych. co warto wiedzieć o niewzrokowej wrażliwości na światło

Content
Title variants
EN
Light pollution as one of the causes of civilization diseases. What you need to know about non-visual response to light
Languages of publication
PL EN
Abstracts
PL
Na obecnym etapie rozwoju technologicznego człowiek bezwiednie podlega zwiększonemu działaniu światła. Korzystanie ze sztucznego oświetlenia umożliwia bardzo intensywną aktywność w trakcie trwania całej doby, uelastycznienie czasu pracy i zmianę stylu życia. Ponadto używając wielu narzędzi, takich jak telefony komórkowe, komputery i telewizory, opartych o technologię LED, które emitują różne spektra światła, w tym duże "ilości" światła krótkofalowego, człowiek jest w stałym i bliskim kontakcie ze światłem często przez długi okres. Tematem artykułu jest pokazanie najważniejszych zagadnień dotyczących tego, jak tak częsta ekspozycja na działanie sztucznego światła generującego spektrum światła inne od spektrum światła naturalnego, wpływa na ludzkie zdrowie, w tym także na jakość snu, przyczyniając się do zjawiska zanieczyszczenia środowiska światłem. Opisane zostanie działanie światła krótkofalowego, które może zmieniać rytmy circadialne procesów biologicznych, wywołuje bezpośrednią reakcję niewzrokową i działa na takie procesy, jak synchronizacja rytmów okołodobowych, wydzielanie hormonów (np. melatoniny), redukcja wolnofalowej aktywności podczas snu, ekspresja genów, regulacja temperatury ciała, a także poprawa czujności i funkcji poznawczych.
EN
At the present stage of technological growth, humans are unknowingly affected by the ever-growing influence of artificial light. The use of artificial light gives people an opportunity to be intensely active throughout a 24 hour cycle, it also brings about the flexibility of working hours and changes in lifestyle. Moreover, various devices (mobile phones, computers, TV sets etc.) based on LED technology which emit different light spectra, including lots of short-wavelength-light, are more and more often used nowadays. Using them keeps people in continuous contact with a light source, often for long periods of time. The paper refers to the issue of how human health, including sleep quality, is influenced by daily and frequent exposition to artificial light generated by light spectra different from the natural ones. And attempts to explain how this exposition may contribute to the light pollution. The main theme of this article is to answer the question of how light affects physiological functions around the full visible spectrum and throughout a 24 hour cycle. It is now known that short-wavelength light, having the ability to change circadian rhythms, elicits direct non-visual response and influences such physiological processes as circadian rshythm synchronization, hormones suppression (e.g. melatonin secretion), reduction of slow wave activity during sleep, genes expression, body temperature regulation. According to the latest data, short-wavelength light also enhances alertness and improves cognitive functions.
Keywords
Journal
Year
Volume
63
Issue
2
Pages
211-222
Physical description
Dates
published
2014
References
  • Arendt J., 2010. Shift work-coping with biological clock. Occup. Med. 60, 10-20.
  • Ben-Shlomo R., Kyriacou C. P., 2010. Light pulses administered during the circadian dark phase alter expression of cell cycle associated transcripts in mouse brain. Cancer Genet. Cytogenet. 197, 65-70.
  • Berson D. M., Dunn F. A., Takao M., 2002. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070-1073.
  • Bowmaker J. K., Dartnall H. J., 1980. Visual pigments of rods and cones in a human retina. J. Physiol. 298, 501-511.
  • Brainard G. C., 2005. Photons, clocks, and consciousness. J. Biol. Rhythms 20, 314-325.
  • Brainard G., Hanifin J., Greeson J., Byrne B., Glickman G., Gerner E., Rollag M., 2001. Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. J. Neurosci. 21, 6405-6412.
  • Bullough J. D., Rea M. S., Figueiro M. G., 2006. Of mice and women: Light as a circadian stimulus in breast cancer research. Cancer Causes Control 17, 375-383.
  • Cajochen C., 2007. Alerting effects of light. SLEEP Med. Rev. 11, 453-464.
  • Cajochen C., Zeitzer J. M., Czeisler C. A., Dijk D. J., 2000. Dose-response relationship for light intensity and ocular and electroencephalographic correlates of human alertness. Behav. Brain Res. 115, 75-83.
  • Cajochen C., Munch M., Kobialka S., Krauchi K., Steiner R., Oelhafen P., Orgul S., Wirz-Justice A., 2005. High sensitivity of human melatonin, alertness, thermoregulation and heart rate to short wavelength light. J. Clin. Endocrinol. Metabol. 90, 1311-1316.
  • Cajochen C., Jud C., Münch M., Kobialka S., Wirz-Justice A., Albrecht U., 2006. Evening exposure to blue light stimulates the expression of the clock gene PER2 in humans. Europ. J. Neurosci. 23, 1082-1086.
  • Cajochen C., Chellappa S., Schmidt C., 2010. What keeps us awake? The role of clocks and hourglasses, light, and melatonin. Int. Rev. Neurobiol. 93, 57-90.
  • Chang L. J., Yarkoni T., Khaw M. W., Sanfey A. G. 2013. Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cerebral Cortex 23, 739-749.
  • Chellappa S. L., Steiner R., Blattner P., Oelhafen P., Götz T., Cajochen C., 2011. Non-visual effects of light on melatonin, alertness and cognitive performance: can blue-enriched light keep us alert? PLoS One. 6, e16429.
  • Crowley S. J., Lee C., Tseng C. Y., Fogg L. F., Eastman C. I., 2003. Combinations of Bright Light, Scheduled Dark, Sunglasses, and Melatonin to Facilitate Circadian Entrainment to Night Shift Work. J. Biol. Rhythms 18, 513-523.
  • Crowley S. J., Lee C., Tseng C. Y., Fogg L. F., Eastman C. I., 2004. Complete or partial circadian re-entrainment improves performance, alertness, and mood during night-shift work. Sleep 27, 1077-1087.
  • Czeisler C. A., 2009. Medical and genetic differences in the adverse impact of sleep loss on performance: ethical considerations for the medical profession. Trans. Am. Clin. Climatol. Ass. 120, 249-285.
  • Davis S., Mirick D. K., Stevens R., 2001. Night shift work, light at night, and risk of breast cancer. J. Nat. Cancer Inst. 93, 1557-1562.
  • Deacon S., Arendt J., 1996. Adapting to phase shift, II. Effects of melatonin and conflicting light treatment. Physiol. Behav. 59, 675-682.
  • Dijk D. J., 2009. Light, sleep and circadian rhythms. Together Again. PLoS Biol. doi: 10.1371/journal.pbio.1000145.
  • Dijk D. J., Lockley S. W., 2002. Integration of human sleep-wake regulation and circadian rhythmicity. J. Appl. Physiol. 92, 852-862.
  • Eastman C. I., 1994. Dark goggles and bright light improve circadian rhythm adaptation to night-shift work. SLEEP 17, 535-543.
  • Figueiro M. G., Rea M. S., 2010. The effects of red and blue light on circadian variations in cortisol, alpha amylase, and melatonin. Int. J. Endocrinol. doi: 10.1155/2010/829351.
  • Figueiro M. G., Bullough J. D., Parsons R. H., Rea M. S., 2005. Preliminary evidence for a change in spectral sensitivity of the circadian system at night. J. Circad. Rhythms 3, 14.
  • Figueiro M. G., Rea M. S., Bullough J. D., 2006. Does architectural lighting contribute to breast cancer? J. Carcinogen. 5, 20.
  • Figueiro M. G., Bullough J. D., Bierman A., Fay C. R., Rea M. S., 2007. On light as an alerting stimulus at night. Acta Neurobiol. Exp. 67, 171-178.
  • Figueiro M. G., Bierman A., Plitnick B., Rea M.S., 2009a. Preliminary evidence that both blue and red light can induce alertness at night. BMC Neuroscience 10, 105.
  • Figueiro M. G., Bierman A., Bullough J. D., Rea M. S., 2009b. A personal light-treatment device for possibly improving sleep quality in the elderly: Dynamics of nocturnal melatonin suppression at two exposure levels. Chronobiol. Int. 26, 726-739.
  • Fonken L. K., Finy M. S., Walton J. C., Weil Z. M., Workman J. L., Ross J., Nelson R. J., 2009. Influence of light at night on murine anxiety- and depressive-like responses. Behav. Brain Res. 205, 349-354.
  • González M. M., Aston-Jones G., 2006. Circadian regulation of arousal: role of the noradrenergic locus coeruleus system and light exposure . Sleep 29, 1327-1336.
  • Graham D. M., Wong K. Y., Shapiro P., Frederick C., Pattabiraman K., Berson D. M., 2008. Melanopsin ganglion cells use a membrane associated rhabdomeric phototransduction cascade . J. Neurophysiol. 99, 2522-2532.
  • Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W., 2002. Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295, 1065-1070.
  • Lee C., Smith M. R., Eastman C. I., 2006. A compromise phase position for permanent night shift workers: circadian phase after two nights shifts with scheduled sleep and light/dark exposure. Chronobiol. Int. 23, 859-875.
  • Lockley S. W., Gooley J. J., 2006. Circadian Photoreception: Spotlight on the Brain. Curr. Biol. 16, 795-797.
  • Lockley S. W., Skene D. J., Thapan K., English J., Ribeiro D., Haimov I., Hampton S., Middleton B., Von Schantz M., Arendt J., 1998. Extraocular light exposure does not suppress plasma melatonin in humans. J. Clin. Endocrinol. Metab. 83, 3369-3372.
  • Lockley S. W., Brainard G. C., Czeisler C. A., 2003. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light. J. Clin. Endocrinol. Metab. 88, 4502-4505.
  • Lockley S. W., Evans E. E., Scheer F., Brainard G. C., Czeisler C. A., Aeschbach D., 2005. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans. SLEEP 29, 161-168.
  • Łaszewska K., Tafil-Klawe M., Pracki T., Pracka D., 2012. Non-visual effects of light. Review. (W:) Cultural conditioning for wellness. Kurlej W. (red.). Wyd. Neurocentrum, Lublin, 151-162.
  • Martin S. K., Eastman C. I., 1997. Medium-intensity light produces circadian rhythm adaptation to simulated night-shift work. SLEEP 21, 154-165.
  • Mehta R., Zhu R., 2009. Blue or Red? Exploring the effect of color on cognitive task performances. Science 323, 1226-1229.
  • Mills P. R., Tomkins S. C., Schlangen L. J. M., 2007. The effect of high correlated colour temperature office lighting on employee wellbeing and work performance. J. Circad. Rhythms 5, 1-9.
  • Noguchi H., Sakaguchi T., 1999. Effect of illuminance and color temperature on lowering of physiological activity. Appl. Human Sci. 18, 117-123.
  • Penev P. D., Kolker D. E., Zee P. C., Turek F. W., 1998. Chronic circadian desynchronization decreases the survival of animals with cardiomyopathic heart disease. Am. J. Physiol. 275, 2334-2337.
  • Phipps-Nelson J., Redman J. R., Dijk D. J., Rajaratnam S. M., 2003. Daytime exposure to bright light, as compared to dim light, decreases sleepiness and improves psychomotor vigilance performance. SLEEP 26, 695-700.
  • Plitnick B., Figueiro M. G., Wood B., Rea M. S., 2010: The effects of red and blue light on alertness and mood at night. Light. Res. Technol. 42, 449-458.
  • Portas C. M., Rees G., Howseman A. M., Josephs O., Turner R., Frith C. D., 1998 A specific role for the thalamus in mediating the interaction of attention and arousal in humans. J. Neurosci. 18, 8979-8989.
  • Provencio I., Rodriguez I. R., Jiang G., Hayes W. P., Moreira E. F., Rollag M. D., 2000. A novel human opsin in the inner retina. J. Neurosci. 20, 600-605.
  • Revell V. L., Eastman C. I., 2005. How to trick mother nature into letting you fly around or stay up all night. J. Biol. Rhythms 20, 353-365.
  • Ruby N. F., Brennan T. J., Xie X., Cao V., Franken P., Heller H. C., O'hara B. F., 2002. Role of melanopsin in circadian responses to light. Science 298, 2211-2213.
  • Rüger M., Gordijn Marijke C. M., Beersma Domien G. M., De Vries B., Daan S., 2006. Time-of-day-dependent effects of bright light exposure on human psychophysiology: comparison of daytime and nighttime exposure. Am. J. Physiol. Regul. Integr. Compar. Physiol. 36, 148-151.
  • Saper C. B., Scammell T. E., Lu J., 2005. Hypothalamic regulation of sleep and circadian rhythms. Nature 437, 1257-1263.
  • Scheer F., Buijs R. M., 1999. Light affects morning salivary cortisol in humans. J. Clin. Endocrinol. Metab. 84, 3395-3398.
  • Schernhammer E. S., Schulmeister K., 2004. Melatonin and cancer risk: does light at night compromise physiologic cancer protection by lowering serum melatonin levels? Brit. J. Cancer 90, 941-943.
  • Schmidt C., Collette F., Cajochen C., Peigneux P., 2007. A time to think: circadian rhythms in human cognition. Cognit. Neuropsychol. 24, 755-789.
  • Shipp S., 2004. The brain circuitry of attention. Trends Cognit. Sci. 8, 223-230.
  • Smith M. R., Eastman C. I., 2008. Night shift performance is improved by a compromise circadian phase position: study 3. Circadian phase after 7 night shifts with an intervening weekend off. SLEEP 31, 1639-1645.
  • Smith M. R., Fogg L. F., Eastman C. I., 2009. A compromise circadian phase position for permanent night work improves mood, fatigue, and performance. SLEEP 32, 1481-1489.
  • Solomon S. G., Lennie P., 2007. The machinery of colour vision. Nat. Rev. Neurosc. 8, 276-286.
  • Spiegel D., Sephton S., 2002. Re: Night shift work, light at night, and risk of breast cancer. J. Nat. Cancer Inst. 94, 530.
  • Stevens R. G., 2006. Artificial lighting in the industrialized world: circadian disruption and breast cancer. Cancer Causes Control 17, 501-507.
  • Terman M., Terman J. S., 1999. Bright light therapy: side effects and benefits across the symptom spectrum . J. Clin. Psychiat. 60, 799-808.
  • Terman M., Terman J. S., 2005. Light therapy for seasonal and nonseasonal depression: efficacy, protocol, safety, and side effects. CNS Spectrums 10, 647-663.
  • Vandewalle G., Balteau E., Phillips C., Degueldre C., Moreau V., Sterpenich V., Albouy G., Darsaud A., Desseilles M., Dang-Vu T. T., Peigneux P., Lxen A., Dijk D. J, Maquet P., 2006. Daytime Light Exposure Dynamically Enhances Brain Responses. Curr. Biol. 16, 1616-1621.
  • Vandewalle G., Schmidt Ch., Albouy G., Sterpenich V., Darsaud A., Rauchs G., Berken P.-Y., Balteau E., Degueldre Ch., Lxen A., Maquet P., Dijk D.-J., 2007a. Brain responses to violet, blue, and green monochromatic light exposures in humans: Prominent role of blue light and the brainstem. PLoS ONE 2, 1-10.
  • Vandewalle G., Gais S., Schabus M., Balteau E., Carrier J., Darsaud A., Sterpenich V., Albouy G., Dijk D. J., Maquet P., 2007b. Wavelength-Dependent Modulation of Brain Responses to a Working Memory Task by Daytime Light Exposure. Cerebral Cortex 17, 2788-2795.
  • Vandewalle G., Maquet P., Dijk D.-J., 2009. Light as a modulator of cognitive brain function. Trends Cognit. Sci. 13, 429-438.
  • Vandewalle G., Schwartz S., Grandjean D., Wuillaume C., Balteau E., Degueldre C., Schabus M., Phillips C., Lxen a., Dijk D.-J., Maquet P., 2010. Spectral quality of light modulates emotional brain responses in humans . Proc. Natl. Acad. Sci. USA 107, 19549-19554.
  • Wang X. S., Armstrong M. E., Cairns B. J., Key T. J., Travis R. C., 2011. Shift work and chronic disease: the epidemiological evidence. Occupat. Med. 61, 78-89.
  • Warman V. L., Dijk D. J., Warman G. R., Arendt J., Skene D. J., 2003. Phase advancing human circadian rhythms with short wavelength light. Neurosci. Lett. 342, 37-40.
  • Wood B., Rea M. S., Plitnick B., Figueiro M. G., 2013. Light level and duration of exposure determine the impact of self-luminous tablets on melatonin suppression. Appl. Ergonom. 44, 237-240.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv63p211kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.