PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2014 | 63 | 2 | 173-180
Article title

Human sleep and its regulation

Content
Title variants
EN
Human sleep and its regulation
Languages of publication
PL EN
Abstracts
PL
Każdą noc poświęcamy na sen. Obserwując osobę śpiącą, można błędnie sądzić, że sen jest czasem bezczynności dla ciała i mózgu. Jednak przypuszczenie to jest dalekie od prawdy. Podczas snu mózg tętni aktywnością i co więcej pojawiają się wtedy charakterystyczne tylko dla snu korowe oscylacje jego czynności bioelektrycznej. W artykule tym omawiamy metody wykorzystane do poznania aktywności mózgowej podczas snu, koncentrując się na oscylacji korowej, którą nazywamy falą wolną. Fale wolne cechują się niską częstotliwością i wysoką amplitudą, która odzwierciedla procesy homeostazy snu. Innymi słowy, ich amplituda jest miarą ilości wcześniejszego snu i/lub czuwania, wzrastając z czasem czuwania, a zmniejszając się podczas snu. Wyjaśniamy w jaki sposób te fale zostały użyte w modelu homeostatycznej regulacji snu. W końcu, przedstawiamy kilka fundamentalnych teorii o funkcjach snu.
EN
Every night we give ourselves over to sleep. Observing a sleeping person one might mistakenly think that sleep is a time of inactivity for the body and brain. However, this is far from true. During sleep the brain is buzzing with activity and cortical oscillations emerge that can only be seen while asleep. In this article we discuss methods used to capture brain activity during sleep, and focus on a cortical oscillation called the slow wave. Slow waves are low frequency high amplitude waves that reflect the sleep homeostatic processes - they track the amount of prior sleep and wakefulness, increasing with time awake and decreasing during sleep. We discuss how these waves have been used to model the homeostatic sleep process. Finally, we conclude by giving an overview of a few of the most prominent theories about the functions of sleep.
Keywords
Journal
Year
Volume
63
Issue
2
Pages
173-180
Physical description
Dates
published
2014
Contributors
  • Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
author
  • Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
References
  • Achermann P., Borbély A. A., 2011. Sleep homeostasis and models of sleep regulation. [In:] Principles and practice of sleep medicine. Kryger M. H., Roth T., Dement W.C. (Eds.). Elsevier Saunders, Missouri, 431-444.
  • Banks S., Dinges D. F., 2007. Behavioral and physiological consequences of sleep restriction. J. Clin. Sleep Med. 3, 219-528.
  • Baran B., Pace-Schott E. F., Ericson C., Spencer R. M. C., 2012. Processing of emotional reactivity and emotional memory over sleep. J. Neurosci. 32, 1035-1042.
  • Blake H., Gerard R. W., 1937. Brain potentials during sleep. Am. J. Physiol. 119, 692-703.
  • Borbély A. A., 1980. Sleep: Circadian rhythm versus recovery process. [In:] Functional states of the brain: Their determinants. Koukkou M., Lehmann D., Angst J. (Eds.). Elsevier, Amsterdam, 151-161.
  • Borbély A. A., 1982. A two process model of sleep regulation. Hum. Neurobiol. 1, 195-204.
  • Buchmann A., Ringli M., Kurth S., Schaerer M., Geiger A., Jenni O. G., Huber R., 2011. EEG sleep slow-wave activity as a mirror of cortical maturation. Cerebral Cortex 21, 607-615.
  • Cannon W. B., 1939. The wisdom of the body. WW Norton, New York, NY.
  • Daan S., Beersma D. G. M., Borbély A. A., 1984. Timing of human sleep: Recovery process gated by a circadian pacemaker. Am. J. Physiol. 246, R161-R178.
  • Frank M. G., 2012. Erasing synapses. [In:] Sleep. Is it time to be SHY? Neural Plastic. 2012, 264378.
  • Gujar N., Mcdonald S.A., Nishida M., Walker M. P., 2011. A role for rem sleep in recalibrating the sensitivity of the human brain to specific emotions. Cerebral Cortex 21, 115-123.
  • Hanlon E. C., Van Cauter E., 2011. Quantification of sleep behavior and of its impact on the cross-talk between the brain and peripheral metabolism. Proc.Natl, Acad. Sci. USA 108, 15609-15616.
  • Huber R., Ghilardi M. F., Massimini M., Ferrarelli F., Riedner B. A., Peterson M. J., Tononi G., 2006. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity. Nat. Neurosci. 9, 1169-1176.
  • Huber R., Ghilardi M. F., Massimini M., Tononi G., 2004. Local sleep and learning. Nature 430, 78-81.
  • Imeri L., Opp M. R., 2009. How (and why) the immune system makes us sleep. Nat. Rev. Neurosci. 10, 199-210.
  • Jenni O. G., Achermann P., Carskadon M. A., 2005. Homeostatic sleep regulation in adolescents. Sleep 28, 1446-1454.
  • Karni A., Tanne D., Rubenstein B. S., Askenasy J. J. M., Sagi D., 1994. Dependence on REM-sleep of overnight improvement of a perceptual skill. Science 265, 679-682.
  • Meisel C., Olbrich E., Shriki O., Achermann P., 2013. Fading signatures of critical brain dynamics during sustained wakefulness in humans. J. Neurosci. 33, 17363-17372.
  • Mignot E., 2008. Why we sleep: The temporal organization of recovery. Plos Biology 6, 661-669.
  • Perogamvros L., Dang-Vu T. T., Desseilles M., Schwartz S., 2013. Sleep and dreaming are for important matters. Front. Psychol. 4, 1-15.
  • Rasch B., Born J., 2013. About sleep's role in memory. Physiol. Rev. 93, 681-766.
  • Riedner B. A., Vyazovskiy V. V., Huber R., Massimini M., Esser S., Murphy M., Tononi G., 2007. Sleep homeostasis and cortical synchronization: iii. A high-density EEG study of sleep slow waves in humans. Sleep 30, 1643-1657.
  • Roffwarg H. P., Muzio J. N., Dement W. C., 1966. Ontogenetic development of human sleep-dream cycle. Science 152, 604-619.
  • Rusterholz T., 2011. Sleep regulation: Modeling and EEG analysis. PhD Tesis, Faculty of Science, University of Zurich.
  • Rusterholz T., Achermann P., 2011. Topographical aspects in the dynamics of sleep homeostasis in young men: Individual patterns. BMC Neurosci. 12, 84.
  • Rusterholz T., Dürr R., Achermann P., 2010. Inter-individual differences in the dynamics of sleep homeostasis. Sleep 33, 491-498.
  • Smith C., 1985. Sleep states and learning - a review of the animal literature. Neurosci. Biobehav. R. 9, 157-168.
  • Stickgold R., 1998. Sleep: Off-line memory reprocessing. Trends Cogn. Sci. 2, 484-492.
  • Tarokh L., Achermann P., 2013. Sleep homeostasis. [In:] The encyclopedia of sleep. Kushida C. (Ed.). Academic Press, Waltham, MA, 413-417.
  • Tobler I., 1984. Evolution of the sleep process: A phylogenetic approach. Exp. Brain Res. Suppl. 8, 207-226.
  • Tobler I., 2011. Phylogeny of sleep regulation. [In:] Principles and practice of sleep medicine. Kryger M.H., Roth T., Dement W.C. (Eds.). Elsevier Saunders, Missouri, 112-125.
  • Tononi G., Cirelli C., 2003. Sleep and synaptic homeostasis: A hypothesis. Brain Res. Bull. 62, 143-150.
  • Tononi G., Cirelli C., 2006. Sleep function and synaptic homeostasis. Sleep Med. Rev. 10, 49-62.
  • Vyazovskiy V. V., Cirelli C., Pfister-Genskow M., Faraguna U., Tononi G., 2008. Molecular and electrophysiological evidence for net synaptic potentiation in wake and depression in sleep. Nat. Neurosci. 11, 200-208.
  • Vyazovskiy V. V., Delogu A., 2014. NREM and REM sleep: Complementary roles in recovery after wakefulness. Neuroscientist, in press.
  • Vyazovskiy V. V., Harris K. D., 2013. Sleep and the single neuron: The role of global slow oscillations in individual cell rest. Nat. Rev. Neurosci. 14, 445-453.
  • Vyazovskiy V. V., Riedner B. A., Cirelli C., Tononi G., 2007. Sleep homeostasis and cortical synchronization: ii. A local field potential study of sleep slow waves in the rat. Sleep 30, 1631-1642.
  • Walker M. P., 2009. The role of sleep in cognition and emotion. Year Cognit. Neurosci. 1156, 168-197.
  • Watts A., Gritton H. J., Sweigart J., Poe G. R., 2012. Antidepressant suppression of non-REM sleep spindles and REM sleep impairs hippocampus-dependent learning while augmenting striatum-dependent learning. J. Neurosci. 32, 13411-13420.
  • Zimmerman J. E., Naidoo N., Raizen D. M., Pack A. I., 2008. Conservation of sleep: Insights from non-mammalian model systems. Trends Neurosci. 31, 371-376.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv63p173kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.