PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 62 | 4 | 583-596
Article title

Reaktywne formy tlenu w roślinach - więcej niż trucizna

Content
Title variants
EN
Reactive oxygen species in plants - far more than just a poison
Languages of publication
PL EN
Abstracts
PL
Reaktywne formy tlenu (ROS) odgrywają istotną rolę w roślinach, nie tylko jako toksyczne produkty uboczne, powstające podczas metabolizmu tlenowego, ale też związki uczestniczące w regulacji rozwoju i odpowiedzi na stres. W niniejszej pracy przeglądowej przedstawiono rodzaje ROS, powodowane przez nie uszkodzenia, miejsca ich powstawania i detoksykacji w komórce roślinnej. Sygnałowa funkcja ROS w ostatnich latach stała się przedmiotem intensywnych badań. Wykazano, iż ROS uczestniczą w regulacji odpowiedzi na rozmaite rodzaje stresu abiotycznego, m.in. światło o wysokim natężeniu, wysoką lub niską temperaturę, czy zasolenie. Ponadto, są one ważnym elementem odpowiedzi na atak patogenu, pełniąc zarówno funkcję sygnałową, jak i efektorową. Wiadomo, że ROS odgrywają rolę w regulacji rozwoju roślin, w tym wzrostu korzeni, blaszki liściowej, czy łagiewki pyłkowej. Molekularny mechanizm działania ROS wciąż jest słabo poznany. Do tej pory poznano niektóre elementy kaskad sygnałowych, w tym regulowane przez ROS kinazy, fosfatazy oraz szereg czynników transkrypcyjnych. W niniejszej pracy omówiono wyżej wymienione zagadnienia w oparciu o najnowsze doniesienia literaturowe.
EN
Reactive oxygen species (ROS) play a number of important roles in plants, not only as a toxic byproducts of oxygen metabolism, but also as regulators of development and stress responses. In the present review, types of ROS, their chemical reactivity, sites of their generation and detoxification in plant cells are described. Recently, signaling function of ROS has been intensively examined. It was shown, that ROS participate in the regulation of responses to various types of abiotic stress, like high light, high or low temperature or salt stress. Moreover, ROS are important in response to pathogen attack, acting as signaling molecules, but also as toxic agents to pathogens. It is also known, that ROS participate in the regulation of development processes, such as growth of roots, leaves and pollen tubes. Molecular mechanism of ROS action is still poorly known. Up to date, some elements of signaling cascades were identified, like kinases, phosphatases and transcription factors. In this paper, signaling functions of ROS been described in the light of recent literature data.
Keywords
Journal
Year
Volume
62
Issue
4
Pages
583-596
Physical description
Dates
published
2013
Contributors
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii, Biofizyki i Biotechnologii Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
author
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii, Biofizyki i Biotechnologii Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
References
  • Ahmad P., Sarwat M., Sharma S., 2008. Reactive oxygen species, antioxidants and signaling in plants. J Plant Biol. 51, 167-173.
  • Asada K., 2006. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 141, 391-396.
  • Bais H. P., Vepachedu R., Gilroy S., Callaway R. M., Vivanco J. M., 2003. Allelopathy and exotic plant invasion: from molecules and genes to species interactions. Science 301, 1377-1380.
  • Bartosz G., 2008. Druga twarz tlenu. Wolne rodniki w przyrodzie. PWN, Warszawa.
  • Bentinger M., Brismar K., Dallner G., 2007. The antioxidant role of coenzyme Q. Mitochondrion 7, 41-50.
  • Bhattacharjee S., 2005. Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Curr. Sci. 89, 1113-1121.
  • Breusegem van F., Dat J.F., 2006. Reactive oxygen species in plant cell death. Plant Physiol. 141, 384-390.
  • Breusegem van F., Vranova E., Dat J.F., Inze D., 2001. The role of active oxygen species in plant signal transduction. Plant Sci. 161, 405-414.
  • Breusegem van F., Bailey-Serres J., Mittler R., 2008. Unraveling the tapestry of networks involving reactive oxygen species in plants. Plant Physiol. 147, 978-984.
  • Cadenas E., Davies K. J. A., 2000. Mitochondrial free radical generation, oxidative stress and aging. Free Radic. Biol. Med. 29, 222-230.
  • Cadet J., Ravanat J.-L., Martinez G. R., Medeiros M. H. G., Di Mascio P., 2006. Singlet oxygen oxidation of isolated and cellular DNA: Product formation and mechanistic insights. Photochem. Photobiol. 82, 1219-1225.
  • Chojnacka A., Sobieszczuk-Nowicka E., 2009. Poliaminy w programowanej śmierci komórki. Post. Biol. Kom. 36, 161-169.
  • Corpas F. J., Barroso J. B., del Río L. A., 2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6, 145-150.
  • Davies M. J., 2003. Singlet oxygen-mediated damage to proteins and its consequences. Biochem. Biophys. Res. Commun. 305, 761-770.
  • Edreva A., 2005. Generation and scavenging of reactive oxygen species in chloroplasts: a submolecular approach. Agric. Ecosyst. Environ.106, 119-133.
  • Foyer C. H., Noctor G., 2003. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119, 355-364.
  • Foyer C .H., Noctor G., 2005a. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866-1875.
  • Foyer C. H., Noctor G., 2005b. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ. 28, 1056-1071.
  • Gadjev I., Vanderauwera S., Gechev T., Laloi C., Minkov I., Shulaev V., Apel K., Inzé D., Mittler R., van Breusegem F., 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141, 436-445.
  • Gapper C., Dolan L., 2006. Control of plant development by reactive oxygen species. Plant Physiol. 141, 341-345.
  • Gara de L., de Pinto M. C., Tommasi F., 2003. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol. Biochem. 41, 863-870.
  • Gechev T. S., van Breusegem F., Stone J. M., Denev I., Laloi C., 2006. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays 28, 1091-1101.
  • Halliwell B., 2006. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 141, 312-322.
  • Huffaker A., Pearce G., Ryan C. A., 2006. An endogenous peptide signal in Arabidopsis activates components of the innate immune response. Proc. Natl. Acad. Sci. USA 103: 10098-10103.
  • James A. M., Smith R. A. J., Murphy M. P., 2004. Antioxidant and prooxidant properties of mitochondrial coenzyme Q. Arch. Biochem. Biophys. 423, 47-56.
  • Kim M.-S., Kim H.-S., Kim Y.-S., Baek K.-H., Oh H.-W., Hahn K.-W., Bae R.-N., Lee I.-J., Joung H., Jeon J.-H., 2007. Superoxide anion regulates plant growth and tuber development of potato. Plant Cell Rep. 26, 1717-1725.
  • Karpinski S., Reynolds H., Karpinska B., Wingsle G., Creissen G., Mullineaux P., 1999. Systemic signalling and acclimation in response to excess excitation energy in Arabidopsis. Science 284, 654-657.
  • Kohen R., Nyska A., 2002. Oxidation of biological systems: Oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol. Pathol. 30, 620-650.
  • Kotchoni S. O., Gachomo E. W., 2006. The reactive oxygen species network pathways: an essential prerequisite for perception of pathogen attack and the acquired disease resistance in plants. J. Biosci. 31, 389-404.
  • Krasuska U., Gniazdowska A., Bogatek R., 2011. Rola ROS w fizjologii nasion. Kosmos 290-291, 113-128.
  • Krieger-Liszkay A., 2004. Singlet oxygen production in photosynthesis. J. Exp. Botany, 56, 337-346.
  • Krieger-Liszkay A., Fufezan C., Trebst A., 2008. Singlet oxygen production in photosystem II and related protection mechanism. Photosynth. Res. 98, 551-564.
  • Kwak J. M., Mori I. C., Pei Z. M., Leonhardt N., Torres M. A., Dangl J. L., Bloom R. E., Bodde S., Jones J. D. G., Schroeder J. I., 2003. NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22, 2623-2633.
  • Kwak J. M., Nguyen V., Schroeder J. I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329.
  • Lenaz G., Fato R., Formiggini G., Genova M. L., 2007. The role of coenzyme Q in mitochondrial electron transport. Mitochondrion 7, 8-33.
  • Mene-Saffrane L., DellaPenna D., 2010. Biosynthesis, regulation and functions of tocochromanols in plants. Plant Physiol. Biochem. 48, 301-309.
  • Miller G., Shulaev V., Mittler R., 2008. Reactive oxygen signaling and abiotic stress. Physiol. Plant. 133, 481-489.
  • Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410.
  • Mittler R., Vanderauwera S., Gollery M., van Breusegem F., 2004. Reactive oxygen gene network of plants. Trends Plant Sci. 9, 490-498 .
  • Mullineaux P. M., Karpinski S., Baker N. R., 2006. Spatial dependence for hydrogen peroxide-directed signaling in light-stressed plants. Plant Physiol. 141, 346-350.
  • Munne-Bosch S., Alegre L., 2002. The function of tocopherols and tocotrienols in plants. Crit. Rev. Plant Sci. 21, 31-57.
  • Navrot N., Rouhier N., Gelhaye E., Jacquot J.-P., 2007. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol. Plantar.129, 185-195.
  • Niki E., 2009. Lipid peroxidation: Physiological levels and dual biological effects. Free Radic. Biol. Med. 47, 469-484.
  • Noctor G., 2006. Metabolic signalling in defence and stress: the central roles of soluble redox couples. Plant Cell Environ. 29, 409-425.
  • Noctor G., de Paepe R., Foyer C. H., 2007. Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci. 12 , 125-134 .
  • Nowicka B., Kruk J., 2010. Occurrence, biosynthesis and function of isoprenoid quinones. Biochim. Biophys. Acta 1797, 1587-1605.
  • Pitzschke A., Hirt H., 2006. Mitogen-activated protein kinases and reactive oxygen species signaling in plants. Plant Physiol. 141, 351-356.
  • Rhoads D. M., Umbach A. L., Subbaiah C. C., Siedow J. N., 2006. Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol. 141, 357-366.
  • Rio del L. A., Sandalio L. M., Corpas F. J., Palma J. M., Barroso J. B., 2006. Reactive oxygen species and reactive nitrogen species in peroxisomes. Production, scavenging, and role in cell signaling. Plant Physiol. 141, 330-335.
  • Rodriguez A. A., Grunberg K. A., Taleisnik E. L., 2002. Reactive oxygen species in the elongation zone of maize leaves are necessary for leaf extension. Plant Physiol. 129, 1627-1632.
  • Sagi M., Fluhr R., 2006. Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol. 141, 336-340.
  • Sang M., Ma F., Xie J., Chen X.-B., Wang K.-B., Qin X.-C., Wang W.-D., Zhao J.-Q., Li L.-B., Zhang J.-P., Kuang T.-Y., 2010. High-light induced singlet oxygen formation in cytochrome b6f complex from Bryopsis corticulans as detected by EPR spectroscopy. Biophys. Chem. 146, 7-12.
  • Suzuki N., Koussevitzky S., Mittler R., Miller G., 2012. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 35, 259-270.
  • Szymańska R., Strzałka K., 2010. Reaktywne formy tlenu w roślinach - powstawanie, dezaktywacja i rola w przekazywaniu sygnału. Post. Biochem. 56, 182-190.
  • Ślesak H., Ślesak I., 2011. Odpowiedź roślin na zranienie. Kosmos 3-4, 445-457.
  • Torres M. A., Jones J. D. G., Dangl J. L., 2006. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 141, 373-378.
  • Ślesak I., Libik M., Karpinska B., Karpinski S., Miszalski Z., 2007. The role of hydrogen peroxide in regulation of plant metabolism and cellular signalling in response to environmental stresses. Acta Biochim. Pol. 54, 39-50.
  • Triantaphylides C., Havaux M., 2009. Singlet oxygen in plants: production, detoxification and signaling. Trends Plant Sci. 14, 219-228.
  • Triantaphylides C., Krischke M., Hoeberichts F. A., Ksas B., Gresser G., Havaux M., van Breusegem F., Mueller M. J., 2008. Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol. 148, 960-968.
  • Vranova E., Inze D., van Breusegem F., 2002. Signal transduction during oxidative stress. J Exp. Bot. 53, 1227-1236.
  • White D. A., Fisk I. D., Gray D. A., 2006. Characterisation of oat (Avena sativa L.) oil bodies and intrinsically associated E-vitamers. J Cer. Scie. 43, 244-249.
  • Yesbergenova Z., Yang G., Oron E., Soffer D., Fluhr R., Sagi M., 2005. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42, 862-876.
  • Zaninotto F., La Camera S., Polverari A., Delledonne M., 2006. Cross talk between reactive nitrogen and oxygen species during the hypersensitive disease resistance response. Plant Physiol. 141, 379-383.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv62p583kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.