Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 62 | 4 | 557-570

Article title

Oporność bakterii na srebro - problem stary czy nowy?

Content

Title variants

EN
Bacterial resistance to silver - a new or an old problem?

Languages of publication

PL EN

Abstracts

PL
Srebro znane jest ze swych antybakteryjnych właściwości już od czasów starożytnych. Pierwsze wzmianki o srebroopornych drobnoustrojach pojawiły się w 1975 r. Mechanizmy oporności oraz biologicznego działania srebra na bakterie zostały opisane na podstawie obserwacji interakcji komórki drobnoustroju z jonami Ag+. Srebro jest jedną z alternatywnych względem antybiotyków metod zwalczania patogenów. Od wielu lat stosowane jest w medycynie w formie azotanu srebra lub sulfadiazyny srebra. Rozwój nanotechnologii daje nowe możliwości w produkcji związków biologicznie aktywnych opartych na bazie srebra. Nanostruktury cechuje dużo wyższa biologiczna aktywność niż ich większych pobratymców, wynikająca z mocno rozwiniętej powierzchni. Nanocząstki srebra stanowią alternatywną metodę zwalczania patogenów trudnych do eliminacji z powodu rozwiniętej wielolekooporności. Ze względu na coraz szersze zastosowanie nanocząstek srebra w wielu gałęziach przemysłu oraz niejednokrotnie nieuzasadnione i niekontrolowane ich użycie, istnieje poważne ryzyko narastania oporności bakterii i innych mikroorganizmów na Ag.
EN
Silver has been known for its antibacterial activity since ancient times. First information about silver resistant microorganisms has appeared in 1975. Mechanism of resistance and biological activity of silver have been described as interaction between bacteria and silver ions (Ag+). Silver is one of many alternative ways of killing bacteria. For a long time silver has been used in medicine as silver nitrate or silver sulfadiazine. Progress in bionanotechnology offers us novel possibilities in production of silver -containing structures of high biological activity. Nanoparticles have bigger surface contact area and indicate higher biological activity than their larger equivalents. Due to broadening industrial usage of silver nanoparticles (often unreasonable) there is growing risk of appearance of microoganisms resistantce to silver.

Keywords

Journal

Year

Volume

62

Issue

4

Pages

557-570

Physical description

Dates

published
2013

Contributors

  • Instytut Genetyki i Mikrobiologii, Zakład Mikrobiologii, Uniwersytet Wrocławski, Przybyszewskiego 63-77, 51-148 Wrocław, Polska
  • Instytut Genetyki i Mikrobiologii, Zakład Mikrobiologii, Uniwersytet Wrocławski, Przybyszewskiego 63-77, 51-148 Wrocław, Polska

References

  • Arsène-Ploetze F., Koechler S., Marchal M., Coppée J. Y., Chandler M., Bonnefoy V., Brochier-Armanet C., Barakat M., Barbe V. i współaut., 2010. Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genetics 26, 6, e1000859 (online).
  • Bugla-Płoskońska G., Leszkiewicz (Kędziora) A., 2007. Biologiczna aktywność srebra i jego medyczne zastosowanie. Kosmos 56, 115-122.
  • Bugla-Płoskońska G., Leszkiewicz (Kędziora) A., Borak B., Jasiorski, Drulis-Kawa Z., Baszczuk A., Maruszewski K., Doroszkiewicz W., 2007. Bactericidal properties of silica particles with silver islands located on the surface. Int. J. Antimicrob. Agents 29, 738-748.
  • Bugla-Płoskońska G., Jasiorski M., Leszkiewicz (Kędziora) A., Borak B., Baszczuk A., Brzeziński S., Malinowska G., Doroszkiewicz W., 2008a. Bakteriobójcze działanie immobilizowanych preparatów srebra i możliwość ich praktycznego zastosowania. Farmaceutyczny Przegląd Naukowy 37, 23-26.
  • Bugla-Płoskońska G., Jasiorski M., Leszkiewicz (Kędziora) A., Borak B., Drulis-Kawa Z., Baszczuk A., Maruszewski K., Doroszkiewicz W., 2008b. Silver nanoislands located on the silica spheres and its antimicrobial activity against Klebsiella pneumoniae strain. Nano Sci. Nano Techn. Indian J. 2, 45-47.
  • Chaloupka K., Malam Y., Seifalian A. M., 2010. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 28, 580-588.
  • Choi O., Deng K. K., Kim N. J., Ross L. Jr., Surampalli R. Y., Hu Z., 2008. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 42, 3066-3074.
  • Chudasama B., Vala A., Andhariya N., Mehta R., Upadhyay R., 2010. Highly bacterial resistant silver nanoparticles: synthesis and antibacterial activities. J. Nanopart. Res. 12, 1677-1685.
  • Deshpande L. M., Chopade B. A., 1994. Plasmid mediated silver resistance in Acinetobacter baumannii. BioMetals 7, 49-56.
  • Dworniczek E., Nawrot U., Seniuk A., Włodarczyk K., Białynicki-Birula R., 2009. The in vitro effect of a silver-containing dressing on biofilm development. Adv. Clin. Exp. Med. 18, 277-281.
  • Feng Q. L., Wu J., Chen G. Q., Cui F. Z., Kim T. M., Kim J. O., 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mat. Res. 52, 662-668
  • Franke S., Grass G., Rensing C., Nies D. H., 2003. Molecular analysis of thecopper-transporting efflux system CusCFBA of Escherichia coli. J. Bacteriol. 185, 3804-3812.
  • Gajbhiye M., Kesharwani J., Ingle A., Gade A., Rai M., 2009. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5, 382-386.
  • Gilmour M. W., Thomson N. R., Sanders M., Parkhill J., Taylor D. E., 2004. The complete nucleotide sequence of the resistance plasmid R478: defining the backbone components of incompatibility group H conjugative plasmids through comparative genomics. Plasmid 52, 182-202.
  • Goldstein F. W., Labigne-Roussel A., Gerbaud G., Carlier C., Collatz E., Courvalin P., 1983. Transferable plasmid-mediated antibiotic resistance in Acinetobacter. Plasmid 10, 138-147.
  • Gupta A., Maynes M., Silver S., 1998. Effects of halides on plasmid-mediated silver resistance in Escherichia coli. Appl. Environ. Microbiol. 64, 5042-5045.
  • Gupta A., Matsui K., Lo J. F., Silver S., 1999. Molecular basis for resistance to silver cations in Salmonella. Nat. Med. 5, 183-188.
  • Gupta A., Phung L. T., Taylor D. E., Silver S., 2001. Silver resistance genes in plasmids of the IncHII incompatibility group and on the Escherichia coli chromosome. Microbiology 147, 3393-3402.
  • Haefeli C, Franklin C, Hardy K., 1984 Plasmid-determined silver resistance in Pseudomonas stutzeri isolated from a silver mine. J. Bacteriol. 158, 389-92.
  • Holden M. T., Titball R. W., Peacock S. J. i współaut., 2004. Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc. Natl. Acad. Sci. USA 101, 14240-14245.
  • Hsu S. H., Tseng H. J., Lin Y. C., 2010. The biocompatibility and antibacterial properties of waterborne polyurethane-silver nanocomposites. Biomaterials 31, 6796-6808.
  • Ip M., Lui S. L., Poon V. K. M., Lung I., Burd A., 2006. Antimicrobial activities of silver dressings: an in vitro comparison. J. Med. Microbiol. 55, 59-63.
  • Jasiorski M., Leszkiewicz (Kędziora) A., Brzeziński S., Bugla-Płoskońska G., Malinowska G., Borak B., Karbownik I., Baszczuk A., Stręk W., Doroszkiewicz W., 2009. Textile with Silver silica spheres: its antimicrobial activity against Escherichia coli and Staphylococcus aureus. J. Sol-Gel Sci. Technol. 51, 330-334.
  • Jung W. K., Koo H. C., Kim K. W., Shin S., Kim S. H., 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74, 2171-2178.
  • Kaźmierski M., Puchała J., Chrapusta-klimeczek A., Mańkowski P., Jankowski A., 2005. Ocena skuteczności opatrunku typu hydrowłóknistego z dodatkiem srebra jonowego AQUACEL Ag® w miejscowym leczeniu oparzeń. Klinika Zakażeń 2, 108-113.
  • Kędziora A., Strek W., Kepinski L., Bugla-Ploskonska G., Doroszkiewicz W., 2012. Synthesis and antibacterial activity of noveltitaniumdioxide doped with silver. J. Sol-Gel Sci. Technol. 62, 79-86.
  • Kim S., Choi J. E., Choi J., Chung K. H., Park K., Yi J., Ryu D. Y., 2009. Oxidative stress-dependent toxicity of silver nanopartoicles in human hepatoma cells. Toxiol. In Vitro 23, 1076-1084.
  • Kokura S., Handa O., Tagaki T., Ishikawa T., Yoshikawa T., Naito Y., 2010. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomedicine 6, 570-574.
  • Lara H. H., Ayala-Nuñez N. V., Ixtepan-Turrent L., Rodriguez-Padilla C., 2010. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 26, 615-621.
  • Lara H. H., Garza-Treviño E. N., Ixtepan-Turrent L., Singh D. K., 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnol. 9, 30
  • Leszkiewicz (Kędziora) A., Korzekwa K., Bugla-Płoskońska G., 2008. Nanocząstki w biologii i medycynie. Laboratorium - Przegląd Ogólnopolski 5, 30-33.
  • Li X.-Z., Nikaido H., Williams K. E., 1997. Silver-resistant mutants of Escherichia coli display active efflux of Ag+ and are deficient in porins. J. Bacteriol. 179, 6127-6132.
  • Liau S. Y., Read D. C., Pugh W. J., Furr J. R., Russell A. D., 1997. Interaction of silver nitrate with readily identifiable groups: relationship to the antibacterial action of silver ions. Lett. Appl. Microbiol. 25, 279-283.
  • Liu H., Dai S., Fu K., Hsu S., 2010. Antibacterial properties of silver nanoparticles in three different sizes and their nanocomposites with a new waterborne polyurethane. Int. J. Nanomed. 5, 1017-1028.
  • Loh J. V., Percival S. L., Woods E. J., Williams N. J., Cochrane C. A., 2009. Silver resistance in MRSA isolated from wound and nasal sources in humans and animals. Int. Wound J. 6, 32-38.
  • Lok C. N., Ho C. M., Chen R., He Q. Y., Yu W. Y., Sun H., Tam P. K., Chiu J. F., Che C. M., 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J. Biol. Inorganic Chem. 12, 527-534.
  • Lu W., Senapati D., Wang S., Tovmachenko O., Singh A. K., Yu H., Ray P. Ch., 2010. Effect of surface coating on the toxicity of silver nanomaterials on human skin keratinocytes. Chem. Phys. Lett. 487, 92-96.
  • Matsumura Y., Yoshikata K., Kunisaki S. I., Tsuchido T., 2003. Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl. Environ. Microbiol. 69, 4278-4281.
  • McDonnell G., Russell A. D., 1999. Antiseptics and disinfectants: activity, action and resistance. Clin. Microbiol. Rev. 12, 147-179.
  • McHugh S. L., Moellering R. C., Hopkins C. C., Swartz M. N., 1975. Salmonella typhimurium resistant to silver nitrate, chloramphenicol, and ampicillin. Lancet 1, 235-240.
  • Miao A. J., Schwehr K. A., Xu Ch., Hang S. J., Luo Z., Quigg A., Santschi P. H., 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substaces. Environ. Pollut. 157, 3034-3041.
  • Nies D. H., 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27, 313-339.
  • Ovington L. G., 2004. The truth about silver. Ostomy Wound Manage 50, 1-10.
  • Pal S., Tak Y. K., Song J. M., 2007. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712-1720.
  • Percival S. L., Bowler P. G., Russell D., 2005. Bacterial resistance to silver in wound care. J. Hosp. Infect. 60, 1-7.
  • Pooley F. D., 1982. Bacteria accumulate silver during leaching of sulphide or minerals. Nature 296, 642-643.
  • Rajini Rani D. B., Mahadevan A., 1992. Plasmid mediated metal and antibiotic resistance in marine Pseudomonas Biometals 5, 73-80.
  • Remenant B., Coupat-Goutaland B., Guidot A., Cellier G., Wicker E., Allen C., Fegan M., Pruvost O., Elbaz M., Calteau A., Salvignol G., Mornico D., Mangenot S., Barbe V., Médigue C., Prior P., 2005. Genomes of three tomato pathogens within the Ralstonia solanacearum species complex reveal significant evolutionary divergence. BMC Genomics. 15, 379.
  • Ruby E. G., Urbanowski M., Campbell J., Dunn A., Faini M., Gunsalus R., Lostroh P., Lupp C., McCann J., Millikan D., Schaefer A., Stabb E., Stevens A., Visick K., Whistler C., Greenberg E. P., 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102, 3004-3009.
  • Russell A. D., Hugo W. B., 1994. Antimicrobial activity and action of silver. Progr. Med. Chem. 31, 351-370.
  • Samberg M. E., Orndorff P. E., Monteiro-Riviere N. A., 2011. Antibacterial efficacy of silver nanoparticles of different sizes, surface conditions and synthesis methods. Nanotoxicology 5, 244-253.
  • Silver S., 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27, 341-353.
  • Silver S., Phung L. T., 1996. Bacterial heavy metal resistance: new surprises. Ann. Rev. Microbiol. 50, 753-789.
  • Silver S., Phung L. T., 2005. A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. J. Industr. Microbiol. Biotechnol. 32, 587-605.
  • Silver S., Gupta A., Matsui K., Lo J.-F., 1999. Resistance to Ag(I) cations in bacteria: environments, genes and proteins. Metal-based Drugs 6, 315-320.
  • Silver S., Phung L. T., Silver G., 2006. Silver as biocides in burn and wound dressings and bacterial resistance to silver compounds. J. Industr. Microbiol. Biotechnol. 33, 627-634.
  • Slawson R. M., Lee H., Trevors J. T., 1990. Bacterial interactions with silver. Biol. Metals 3, 151-154.
  • Slawson R. M., Trevors J. T., Lee H., 1992a. Silver accumulation and resistance in Pseudomonas stutzeri. Arch. Microbiol. 158, 398-404.
  • Slawson R. M., Van Dyke M. I., Lee H., Trevors J. T., 1992b. Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid 27, 72-79.
  • Solioz M., Odermatt A., 1995. Copper and silver transport by CopB-ATPase in membrane vesicles of Enterococcus hirae. J. Biol. Chem. 270, 9217-9221.
  • Stephan R., Lehner A., Tischler P., Rattei T., 2010. Complete Genome Sequence of Cronobacter turicensis LMG 23827, a foodborne pathogen causing deaths in neonates. J. Bacteriol. 193, 309-310.
  • Su H. L., Lin S. H., Wei J. C. Pao I. C., Chiao S. H. i współaut., 2011. Novel Nanohybrids of Silver Particles on Clay Platelets for Inhibiting Silver Resistant Bacteria. PLoS ONE 6, e21125.
  • Wang Q., Yang M., Xiao J., Wu H., Wang X., Lv Y., Xu L., Zheng H., Wang S., Zhao G., Liu Q., Zhang Y., 2009. Genome sequence of the versatile fish pathogen Edwardsiella tarda provides insights into its adaptation to broad host ranges and intracellular niches. PLoS One. 4, e7646. (online).
  • Woo K. J., Koo H. C., Kim K. W., Shin S., Kim S. H., Park Y. H., 2008. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl. Environ. Microbiol. 74, 2171-2178.
  • Woods E. J., Cochrane C. A., Percival S. L., 2009. Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Veterinary Microbiology 138, 325-329.
  • Wu K. M., Li L. H., Yan J. J., Tsao N., Liao T. L., Tsai H. C., Fung C. P., Chen H. J., Liu Y. M., Wang J. T., Fang C. T., Chang S. C., Shu H. Y., Liu T. T., Chen Y. T., Shiau Y. R., Lauderdale T. L., Su I. J., Kirby R., Tsai S. F., 2009. Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J. Bacteriol. 191, 4492-4501.
  • Wysocka K., Leszkiewicz (Kędziora) A., Kowalczyk J., Stręk W., Doroszkiewicz W., Podbielska H., 2007. Nanomateriały krzemionkowe domieszkowane srebrem i ich możliwe zastosowania w medycynie. Acta Bio-Optica Informat. Med. 3, 22-25.
  • Xu Q. S., Hu J. Z., Xie K. B., Yang H. Y., Du K. H., Shi G. X., 2010. Accumulation and acute toxicity of silver in Potamogeton crispus. J. Hazarod. Mat. 173, 186-193.
  • Yamanaka M., Hara K., Kudo J., 2005. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl. Environ. Microbiol. 71, 7589-7593.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv62p557kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.