Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 62 | 4 | 535-546

Article title

Charakterystyka gleju drosophila melanogaster - porównanie do gleju kręgowców

Content

Title variants

EN
Characterization of Drosophila melanogaster glia in comparison with vertebrate glia

Languages of publication

PL EN

Abstracts

PL
W układzie nerwowym muszki owocowej, Drosophila melanogaster liczba komórek glejowych w stosunku do liczby neuronów jest znacznie mniejsza niż w układzie nerwowym kręgowców. Mechanizm ukierunkowania komórek macierzystych na szlak rozwojowy gleju także jest inny, jednakże podobnie jak u kręgowców, populacja komórek glejowych D. melanogaster jest populacją heterogenną. W jej skład wchodzą cztery podstawowe typy komórek wyspecjalizowane do pełnienia różnych funkcji. Jest to glej powierzchniowy, glej korowy i glej neuropilu w centralnym układzie nerwowym (CUN), oraz glej peryferyczny w obwodowym układzie nerwowym (OUN). Pod względem morfologii i funkcji komórki te wykazują duże podobieństwo do odpowiednich typów komórek glejowych kręgowców. Podobieństwo to powstało niezależnie w toku ewolucji, w wyniku specjalizacji do pełnienia określonych funkcji. W niniejszym artykule przedstawiono porównanie poszczególnych typów i podtypów komórek glejowych D. melanogaster do gleju kręgowców: astrocytów, oligodendrocytów, mikrogleju i komórek Schwanna.
EN
In comparison with vertebrates, the fruit fly, Drosophila melanogaster, has fewer glial cells and much lower glia to neuron ratio. Glia of D. melanogaster is also specified by a different molecular mechanism of differentiation. However, just as vertebrates glia, it is specialized for distinct functions depending on its type. There are four main types of glia in D. melanogaster nervous system: the surface glia, the cortex glia and the neuropil glia in CNS, as well as the peripheral glia in PNS. Based on morphological and/or functional similarities (that have arisen independently and do not represent homologies), one can conclude that D. melanogaster glia share many common features with vertebrate glia. This article characterizes different types and sub-types of D. melanogaster glia in comparison with vertebrate astrocytes, oligodendrocytes, microglia and Schwann cells.

Keywords

Journal

Year

Volume

62

Issue

4

Pages

535-546

Physical description

Dates

published
2013

Contributors

  • Uniwersytet Jagielloński, Instytut Zoologii, Zakład Biologii i Obrazowania Komórki, Gronostajowa 9, 30-387 Kraków, Polska

References

  • Adler E. M., 2010. Focus issue: Getting excited about glia. Sci. Signal. 147, 11.
  • Akiyama Y., Hosoya T., Poole A. M., Hotta Y., 1996. The gcm-motif: a novel DNA-binding motif conserved in Drosophila and mammals. Proc. Natl. Acad. Sci. USA 93, 14912-14916.
  • Anderson D. J., 2001. Stem cells and pattern formation in the nervous system: the possible versus the actual. Neuron 30, 19-35.
  • Awasaki T., Ito K., 2004. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr. Biol. 14, 668-677.
  • Awasaki T., Lai S. L., Ito K., Lee T., 2008. Organization and postembryonic development of glial cells in the adult central brain of Drosophila. J. Neurosci. 28, 13742-13753.
  • Azevedo F.A., Carvalho L. R., Grinberg L. T., Farfel J. M., Ferretti R. E., Leite R. E., Jacob Filho W., Lent R., Herculano-Houzel S., 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513, 532-541.
  • Badenhorst P., 2001. Tramtrack controls glial number and identity in the Drosophila embryonic CNS. Development 128, 4093-4101.
  • Banerjee S., Pillai A. M., Paik R., Li J., Bhat M. A., 2006. Axonal ensheathment and septate junction formation in the peripheral nervous system of Drosophila. J. Neurosci. 26, 3319-3329.
  • Barres B. A., 2008. The mystery and magic of glia: a perspective on their roles in health and disease. Neuron 60, 430-440.
  • Chotard C., Salecker I., 2007. Glial cell development and function in the Drosophila visual system. Neuron Glia Biol. 3, 17-25.
  • Daneman R., Barres B. A., 2005. The blood-brain barrier - lessons from moody flies. Cell 123, 9-12.
  • Dearborn R. Jr, Kunes S., 2004. An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131, 2291-2303.
  • Di Nuzzo M., Mangia S., Maraviglia B., Giove F., 2012. The role of astrocytic glycogen in supporting the energetics of neuronal activity. Neurochem Res. 37, 2432-2438.
  • Doherty J., Logan M. A., Tasdemir O. E., Freeman M. R., 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29, 4768-4781.
  • Dumstrei K., Wang F., Hartenstein V., 2003. Role of DE-cadherin in neuroblast proliferation, neural morphogenesis, and axon tract formation in Drosophila larval brain development. J. Neurosci. 23, 3325-3335.
  • Edwards T. N., Meinertzhagen I. A., 2010. The functional organisation of glia in the adult brain of Drosophila and other insects. Prog. Neurobiol. 90, 471-497.
  • Egger B., Leemans R., Loop T., Kammermeier L., Fan Y., Radimerski T., Strahm M. C., Certa U., Reichert H., 2002. Gliogenesis in Drosophila: genome-wide analysis of downstream genes of glial cells missing in the embryonic nervous system. Development 129, 3295-3309.
  • Fabian-Fine R, Verstreken P., Hiesinger P. R., Horne J. A., Kostyleva R ., Zhou Y., Bellen H. J., Meinertzhagen I. A., 2003. Endophilin promotes a late step in endocytosis at glial invaginations in Drosophila photoreceptor terminals. J. Neurosci. 23, 10732-10744.
  • Freeman M. R., 2006. Sculpting the nervous system: glial control of neuronal development. Curr. Opin. Neurobiol. 16, 119-125.
  • Freeman M. R., Doherty J., 2006. Glial cell biology in Drosophila and vertebrates. Trends Neurosci. 29, 82-90.
  • Freeman M. R., Delrow J ., Kim J ., Johnson E., Doe C. Q., 2003. Unwrapping glial biology: Gcm target genes regulating glial development, diversification, and function. Neuron 38, 567-580.
  • Gilmour D. T., Maischein H. M., Nűsslein-Volhard C., 2002. Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34, 577-588.
  • Götz M., 2003. Glial cells generate neurons-master control within CNS regions: developmental perspectives on neural stem cells. Neuroscientist 9, 379-397.
  • Grace P. M., Rolan P. E., Hutchinson M. R., 2011. Peripheral immune contributions to the maintenance of central glial activation underlying neuropathic pain. Brain Behav. Immun. 25, 1322-1332.
  • Halassa M. M., Fellin T., Haydon P.G., 2009. Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57, 343-346.
  • Hartenstein V., 2011. Morphological diversity and development of glia in Drosophila. Glia 59, 1237-1252.
  • Hartline D. K., 2011. The evolutionary origins of glia. Glia 59, 1215-1236.
  • Haydon P.G., Blendy J., Moss S. J., Rob Jackson F., 2008. Astrocytic control of synaptic transmission and plasticity: a target for drugs of abuse? Neuropharmacology 56, 83-90.
  • Hosoya T., Takizawa K., Nitta K., Hotta Y., 1995. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 82, 1025-1036.
  • Iaco de R., Soustelle L., Kammerer M., Sorrentino S., Jacques C., Giangrande A., 2006. Huckebein-mediated autoregulation of Glide/ Gcm triggers glia specification. EMBO J. 25, 244-254.
  • Iwasaki Y., Hosoya T., Takebayashi H., Ogawa Y., Hotta Y., Ikenaka K., 2003. The potential to induce glial differentiation is conserved between Drosophila and mammalian glial cells missing genes. Development 130, 6027-6035.
  • Jackson F. R., Haydon P. G., 2008. Glial cell regulation of neurotransmission and behavior in Drosophila. Neuron Glia Biol. 4, 11-17.
  • Johnson R. W., Wood J. L., Jones B. W., 2012. Characterization of cis-regulatory elements controlling repo transcription in Drosophila melanogaster. Gene 492, 167-176.
  • Jones B. W., Fetter R. D., Tear G., Goodman C. S., 1995. glial cells missing: a genetic switch that controls glial versus neuronal fate. Cell 82, 1013-1023.
  • Kammerer M., Giangrande A., 2001. Glide2, a second glial promoting factor in Drosophila melanogaster. EMBO J. 20, 4664-4673.
  • Kettenmann H., Ransom B. R., 2005. Neuroglia. New York: Oxford UP.
  • Kim J., Jones B. W., Zock C., Chen Z., Wang H., Goodman C. S., Anderson D. J., 1998. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc. Natl. Acad. Sci. USA 95, 12364-12369.
  • Kim J., Lo L., Dormand E., Anderson D. J., 2003. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38, 17-31.
  • Klaes A., Menne T., Stollewerk A., Scholz H., Klämbt C.,1994. The Ets transcription factors encoded by the Drosophila gene pointed direct glial cell differentiation in the embryonic CNS. Cell 78, 149-160.
  • Kretzschmar D., 2009. Swiss cheese et allii, some of the first neurodegenerative mutants isolated in Drosophila. J. Neurogenet. 23, 34-41.
  • Kurant E., Axelrod S., Leaman D., Gaul U., 2008. Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133, 498-509.
  • Leiserson W. M., Harkins E. W., Keshishian H., 2000. Fray, a Drosophila serine/threonine kinase homologous to mammalian PASK, is required for axonal ensheathment. Neuron 28, 793-806.
  • Lemke G., 2001. Glial control of neuronal development. Annu. Rev. Neurosci. 24, 87-105.
  • Lyons D. A., Pogoda H. M., Voas M. G., Woods I. G., Diamond B., Nix R., Arana N., Jacobs J., Talbot W. S., 2005. erbb3 and erbb2 are essential for schwann cell migration and myelination in zebrafish. Curr. Biol. 15, 513-524.
  • Mac Donald J. M., Beach M. G., Porpiglia E., Sheehan A. E., Watts R. J., Freeman M. R., 2006. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50, 869-881.
  • Magistretti P. J., 2009. Role of glutamate in neuron-glia metabolic coupling. Am. J. Clin. Nutr. 90, 875S-880S.
  • Newman E. A., 2003. New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci. 26, 536-542.
  • Oberheim N. A., Goldman S. A., Nedergaard M., 2012. Heterogeneity of astrocytic form and function. Meth. Mol. Biol. 814, 23-45.
  • Oikonomou G., Shaham S., 2011. The glia of Caenorhabditis elegans. Glia 59, 1253-1263.
  • Parpura V., Heneka M. T., Montana V., Oliet S. H., Schousboe A., Haydon P. G., Stout R. F. Jr, Spray D. C., Reichenbach A., Pannicke T., Pekny M., Pekna M., Zorec R., Verkhratsky A., 2012. Glial cells in (patho)physiology. J. Neurochem. 121, 4-27.
  • Parker R. J., Auld V. J., 2006. Roles of glia in the Drosophila nervous system. Semin. Cell Dev. Biol. 7, 66-77.
  • Perea G., Araque A., 2010. GLIA modulates synaptic transmission. Brain Res. Rev. 63, 93-102.
  • Pereanu W., Shy D., Hartenstein V., 2005. Morphogenesis and proliferation of the larval brain glia in Drosophila. Dev. Biol. 283, 191-203.
  • Pyza E., Górska-Andrzejak J., 2008. External and internal inputs affecting plasticity of dendrites and axons of the fly's neurons. Acta Neurobiol. Exp. 68, 322-333.
  • Ransom B. R., Ransom C. B., 2012. Astrocytes: multitalented stars of the central nervous system . Meth. Mol. Biol. 814, 3-7.
  • Richardt A., Rybak J., Störtkuhl K. F., Meinertzhagen I. A., Hovemann B. T., 2002. Ebony protein in the Drosophila nervous system: optic neuropile expression in glial cells. J. Comp. Neurol. 452, 93-102.
  • Ross S. E., Greenberg M. E., Stiles C. D., 2003. Basic helix-loop-helix factors in cortical development. Neuron 39, 13-25.
  • Rowitch D. H., 2004. Glial specification in the vertebrate neural tube. Nat. Rev. Neurosci. 5, 409-419.
  • Rowitch D. H., Kriegstein A. R., 2010. Developmental genetics of vertebrate glial-cell specification. Nature 468, 214-222.
  • Sepp K. J., Auld V. J., 2003. Reciprocal interactions between neurons and glia are required for Drosophila peripheral nervous system development. J. Neurosci. 23, 8221-8230.
  • Sepp K. J., Schulte J., Auld V. J., 2001. Peripheral glia direct axon guidance across the CNS/PNS transition zone. Dev. Biol. 238, 47-63.
  • Schafer D. P., Lehrman E. K., Stevens B., 2012. The 'quad-partite' synapse: Microglia-synapse interactions in the developing and mature CNS. Glia 61, 24-36.
  • Sonnenfeld M. J., Jacobs J. R., 1995. Macrophages and glia participate in the removal of apoptotic neurons from the Drosophila embryonic nervous system. J. Comp. Neurol. 359, 644-652.
  • Soustelle L., Giangrande A., 2007. Glial differentiation and the Gcm pathway. Neuron Glia Biol. 3, 5-16.
  • Stolt C. C., Lommes P., Sock E., Chaboissier M. C., Schedl A., Wegner M., 2003. The Sox9 transcription factor determines glial fate choice in the developing spinal cord. Genes Dev. 17, 1677-1689.
  • Stork T., Engelen D., Krudewig A., Silies M., Bainton R. J., Klämbt C., 2008. Organization and function of the blood-brain barrier in Drosophila. J. Neurosci. 28, 587-597.
  • Trang T., Beggs S., Salter M. W., 2012. ATP receptors gate microglia signaling in neuropathic pain . Exp. Neurol. 234, 354-361.
  • Vallstedt A., Klos J. M., Ericson J., 2005. Multiple dorsoventral origins of oligodendrocyte generation in the spinal cord and hindbrain. Neuron 45, 55-67.
  • Van De Bor V., Giangrande A., 2002. glide/gcm: at the crossroads between neurons and glia. Curr. Opin. Genet. Dev. 12, 465-72.
  • Villegas S. N., Poletta F. A., Carri N. G., 2003. GLIA: A reassessment based on novel data on the developing and mature central nervous system. Cell. Biol. Int. 27, 599-609.
  • Wagner S., Heseding C., Szlachta K., True J. R., Prinz H., Hovemann B. T., 2007. Drosophila photoreceptors express cysteine peptidase tan. J. Comp. Neurol. 500, 601-611.
  • Yuasa Y., Okabe M., Yoshikawa S., Tabuchi K., Xiong W. C., Hiromi Y., Okano H., 2003. Drosophila homeodomain protein REPO controls glial differentiation by cooperating with ETS and BTB transcription factors. Development 130, 2419-2428.
  • Zhou Q., Choi G., Anderson D. J., 2001. The bHLH transcription factor Olig2 promotes oligodendrocyte differentiation in collaboration with Nkx2.2. Neuron 31, 791807.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv62p535kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.