PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 62 | 1 | 31-36
Article title

Przegląd potencjalnych śladów życia pozaziemskiego w meteorytach

Content
Title variants
EN
Overview of potential traces of extraterrestrial life in meteorites.
Languages of publication
PL EN
Abstracts
PL
Początki naukowego udowodnienia hipotezy panspermii sięgają końca XIX wieku. W latach 70 i 80tych XX wieku wysunięto twierdzenie jakoby komety były nośnikiem życia w przestrzeni kosmicznej. Spadki meteorytów: Murchinson, Orgueil czy Nakhla skierowały wzrok badaczy ku Marsowi, jako potencjalnie zasiedlonej przez mikroorganizmy planecie. W ciągu wielu lat badań chondrytów węglistych zaobserwowano wiele struktur, które swą morfologią i wielkością przypominają ziemskie bakterie. Pomimo tego nie znaleziono jednak niepodważalnych dowodów na istnienie pozaziemskiego życia.
EN
The origins of scientific evidence of panspermia hypothesis back to the late nineteenth century. In the 70s and 80s of the twentieth century the claim that the comets are the source of life in space has been put forward. Fall of meteorites like: Murchison, Orgueil and Nakhla directed attention of researchers to Mars, as a planet potentially inhabited one time by microorganisms. Over the years studies of carbonaceous chondrites recorded many structures the morphology and size of which proved similar to those of Earth's bacteria. Despite this there is still no clear evidence for the existence of extraterrestrial life.
Keywords
Journal
Year
Volume
62
Issue
1
Pages
31-36
Physical description
Dates
published
2013
Contributors
  • Uniwersytet Śląski Wydział Nauk o Ziemi Katedra Geochemii, Mineralogii i Petrografii Będzińska 60, 41-200 Sosnowiec, Polska
References
  • Allwood A. C., Walter M. R., Kamber B. S., Marshall C. P., Burch I. W ., 2006. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714718.
  • Bada J. L., Glavin D. P., McDonald G. D., Becker L., 1998. A search for endogenous amino acids in Martian meteorite ALH84001. Science 279, 362-365.
  • Berzelius J. J., 1834. Analysis of the Alais meteorite and implications about life in other worlds.
  • Buseck P. R., Dunin-Borkowski R. E., Devouard B., Frankel R. B., McCartney M. R., Midgley P. A., Posfai M., Weyland M., 2001. Magnetite morphology and life on Mars. Proc. Natl. Acad. Sci. USA 98, 13490-13495.
  • Callahan M. P., Smith K. E., Cleaves H. J., Ruzicka J., Stern J. C., Glavin D. P., Dom C. H., Dworkin J. P., 2011. Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases. Proc. Natl. Acad. Sci. USA 108, 13995-13998.
  • Cohen B. A., Swindle T. D., Kring D .A., 2000. Support for the Lunar Cataclysm Hypothesis from Lunar Meteorite Impact Melt Ages. Science 290, 1754-1756.
  • De Vera J.P., Kohler U., 2012. The adaptation potential of extremophiles to Martian surface conditions and its implication for the habitability of Mars. European Geosciences Union General Assembly 2012; http://media.egu2012.eu/media/filer_public/2012/04/05/10_solarsystem_devera.pdf
  • Elsila J. E., Glavin D.P., Dworkin J. P., 2009. Cometary glycine detected in samples returned by Stardust. Meteoritics & Planetary Science 44, 1323-1330.
  • Glavin D. P., Callahan M. P., Dworkin J. P., Elsila J. E., 2010. The effects of parent body processes on amino acids in carbonaceous chondrites . Meteoritics & Planetary Science 45, 1948-1972.
  • Halevy I., Fischer W. W., Eiler J. M., 2011. Carbonates in the Martian meteorite Allan Hills 84001 formed at 18±4°C in a near-surface aqueous environment . Proc. Natl. Acad. Sci. USA 108, 16895-16899.
  • Hoover R. B., 2011. Fossils of Cyanobacteria in CI1 Carbonaceous Meteorites. J. Cosmol. 13; http://journalofcosmology.com/Life101.html.
  • Jonsson K. I., Rabbow E., Schill R. O., Harms-Ringdahl M., Rettberg P., 2008. Tardigrades survive exposure to space in low Earth orbit. Curr. Biol. 18, 729-731.
  • Joseph R., 2000. Astrobiology, the origin of life, and the Death of Darwinism. University Press, California.
  • Joseph R., Schild R., 2010a. Biological cosmology and the origins of life in the Universe. J. Cosmol. 5, 1040-1090.
  • Joseph R., Schild R., 2010b. Origins, Evolution, and distribution of life in the cosmos: Panspermia, genetics, microbes, and viral visitors from the stars. J. Cosmol. 7, 1616-1670.
  • Kring D. A., Cohen B. A., 2002. Cataclysmic bombardment throughout the inner solar system 3.9-4.0 Ga . J. Geophys. Res. 107, 4.1-4.6.
  • Kvenvolden K. A., Lawless J., Pering K., Peterson E., Flores J., Ponnamperma C., Kaplan I. R., Moore C., 1970. Evidence for extraterrestrial amino-acids and hydrocarbons in the Murchison meteorite . Nature 228, 923-926.
  • Lepland A., van Zuilen M., Arrhenius G., Whitehouse M., Fedo C., 2005. Questioning the evidence for Earth's earliest life - Akilia revisited . Geology 33, 77-79.
  • Makarova K. S., Aravind L., Wolf Y. I., Tatusov R. L., Minton K. W., Koonin E. V., Daly M. J., 2001. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol. Molec. Biol. Rev. 65, 44-79.
  • McKay D. S., Gibson Jr. E. K., Thomas-Keprta K. L., Vali H., Romanek Ch. S., Clemett S. J., Chillier X. D. F., Maechling C. R., Zare R. N., 1996. Search for past life on Mars: Possible relic biogenic activity in Martian meteorite ALH84001. Science 273, 924-930.
  • Melosh H. J., 1988. The rocky road to panspermia . Nature 332, 687-688.
  • Nagy B., Meinschein W. G., Hennessy D. J., 1961. Mass spectroscopic analysis of the Orgueil meteorite: evidence for biogenic hydrocarbons. Ann. NY Acad. Sci. 93, 25-35.
  • Nagy B., Fredriksson K., Urey H.C., Claus G., Anderson C.A., Percy, J., 1963. Electron probe microanalysis of organized elements in the Orgueil meteorite. Nature 198, 121-125.
  • Nisbet E., 2000. The realms of Archaean life. Nature 405, 625-626.
  • O'Leary M., 2008. Anaxagoras and the origin of panspermia theory . iUniverse publishing Group.
  • Pavlov A. K., Shelegedin V. N., Kogan V. T., Pavlov A. A., Vdovina M. A., Tret'yakov A. V., 2007. Can microorganisms survive upon high-temperature heating during the interplanetary transfer by meteorites? Biophysics 52, 640-644.
  • Pflug H.D., 1984. Ultrafine structure of organic matter in meteorites. [W:] Fundamental studies and the future of science. Wickramasinghe C.(red.). Cardiff University College Press, 24-37.
  • Steigerwald J., 2011. NASA Researchers: DNA building blocks can be made in space. NASA; http://www.nasa.gov/topics/solarsystem/features/dna-meteorites.html.
  • Thomson (Lord Kelvin) W., 1871. Inaugural Address to the British Association Edinburgh. We must regard it as probably to the highest degree that there are countless seed-bearing meteoritic stones moving through space . Nature 92, 261-278.
  • Weber P., Greenberg J. M., 1985. Can spores survive in interstellar space?. Nature 316, 403-407.
  • Wickramasinghe J. T., Wickramasinghe N. C., Napier W. M., 2010. Comets and the Origin of Life. World Scientific Publishing.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv62p31kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.