PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 62 | 2 | 221-233
Article title

Ilościowa analiza obrazu w badaniach strukturalnej plastyczności synaptycznej

Content
Title variants
EN
Quantitative image analysis in the structural synaptic plasticity studies
Languages of publication
PL EN
Abstracts
PL
Analiza obrazów mikroskopowych odgrywa obecnie dominującą rolę w badaniach nad strukturą mózgu. Wgląd w strukturalną plastyczność synaptyczną może być kluczem do zrozumienia podstaw wielu zaburzeń neurodegeneracyjnych. Prawie w każdym eksperymencie niezbędna jest ilościowa analiza obrazów tkanki mózgowej, wymagająca często wyspecjalizowanego oprogramowania komputerowego ze względu na złożoność struktur analizowanych obrazów. W niniejszym tekście dokonamy przeglądu najważniejszych problemów towarzyszących analizie obrazów zebranych mikroskopem konfokalnym. Każdy z tych problemów wymaga zastosowania dedykowanych algorytmów.
EN
The analysis of confocal microscopy images has started to play a significant role in the brain structure analysis. An insight into structural synaptic plasticity may be the key to elucidate the molecular basis of many neurodegenerative disorders. Almost every experiment demands a quantitative analysis of brain tissue images, which requires specialized software able to cope with the structural complexity of the data. In the following text we will review common issues arising while performing the confocal image analysis and dedicated algorithms designed to overcome those problems.
Keywords
Journal
Year
Volume
62
Issue
2
Pages
221-233
Physical description
Dates
published
2013
Contributors
  • Pracownia Biofizyki Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
  • Pracownia Obrazowania Struktury i Funkcji Tkanek, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
author
  • Pracownia Biofizyki Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
  • Pracownia Neuromorfologii Molekularnej i Systemowej, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
  • Pracownia Neuromorfologii Molekularnej i Systemowej, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
  • Pracownia Biofizyki Komórki, Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
References
  • Alexander S. P. H., 2009. Glutamate. [W:] Encyclopedia of neuroscience. Larry R. S. (red.). Academic Press, Oxford.
  • Andrulis E. D., Neiman A. M., Zappulla D. C., Sternglanz R., 1998. Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592-595.
  • Bailey C. H., Kandel E. R., 1993. Structural changes accompanying memory storage. Ann. Rev. Physiol. 55, 397-426.
  • Brown J. M., Green J., das Neves R. P., Wallace H. A., Smith A. J., Hughes J., Gray N., Taylor S., Wood W. G., Higgs D. R., Iborra F. J., Buckle V. J., 2008. Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083-1097.
  • Ceyhan E., Ölken R. Ç., Fong L., Tasky T. N., Hurdal M. K., Beg M. F., Martone M. E., Ratnanather J. T., 2007. Modeling metric distances of dendrite spines of mice based on morphometric measures. Int. Symp. Health Informat. Bioinformat.
  • Cohen S., Greenberg M. E., 2008. Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Ann. Rev. Cell Dev. Biol. 24, 183-209.
  • Cremer T., Cremer M., 2010. Chromosome territories. Cold Spring Harbor Perspecti. Biol. 2, doi: 10.1101/cshperspect.a003889.
  • Dailey M. E., Smith S. J., 1996. The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983-2994.
  • Dundr M., Ospina J. K., Sung M. H., John S., Upender M., Ried, T., Hager G. L., Matera A. G., 2007. Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095-1103.
  • Fiala J. C., Feinberg M., Popov V., Harris K. M., 1998. Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900-8911.
  • Grutzendler J., Kasthuri N., Gan W. B., 2002. Long-term dendritic spine stability in the adult cortex. Nature 420, 812-816.
  • Harris K. M., Weinberg R. J., 2012. Ultrastructure of synapses in the mammalian brain. Cold Spring Harbor Perspecti. Biol. 4, doi: 10.1101/cshperspect.a005587.
  • Hering H., Sheng M., 2001. Dendritic spines: structure, dynamics and regulation. Nature Rev. Neurosci. 2, 880-888.
  • Hofer S. B., Bonhoeffer T., 2010. Dendritic spines: the stuff that memories are made of? Current Biol., CB 20, R157-R159.
  • Holtmaat A., Svoboda K., 2009. Experience-dependent structural synaptic plasticity in the mammalian brain. Nature Rev. Neuroscience 10, 647-658.
  • Holtmaat A. J., Trachtenberg J. T., Wilbrecht L., Shepherd G. M., Zhang X., Knott G. W., Svoboda K., 2005. Transient and persistent dendritic spines in the neocortex in vivo. Neuron 45, 279-291.
  • Hosokawa T., Rusakov D. A., Bliss T. V., Fine A., 1995. Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15, 5560-5573.
  • Hung A. Y., Futai K., Sala C., Valtschanoff J. G., Ryu J., Woodworth M. A., Kidd F. L., Sung C. C., Miyakawa T., Bear M. F., Weinberg R. J., Sheng M.2008. Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank1. J. Neurosci. 28, 1697-1708.
  • Izeddin I., Specht C. G., Lelek M., Darzacq X., Triller A., Zimmer C., Dahan M., 2011. Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS ONE 6, e15611.
  • Kasai H., Fukuda M., Watanabe S., Hayashi-Takagi A., Noguchi J., 2010. Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121-129.
  • Kasai H., Matsuzaki M., Noguchi J., Yasumatsu N., Nakahara H., 2003. Structure-stability-function relationships of dendritic spines. Trends Neurosci.26, 360-368.
  • Koh I. Y., Lindquist W. B., Zito K., Nimchinsky E. A., Svoboda K., 2002. An image analysis algorithm for dendritic spines. Neural Computation 14, 1283-1310.
  • Korkotian E., Segal M., 1999. Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 96, 12068-12072.
  • Korkotian E., Segal M.2001. Regulation of dendritic spine motility in cultured hippocampal neurons. J. Neurosci. 21, 6115-6124.
  • Lüscher C., Frerking M., 2009. Long-Term Depression (LTD): Metabotropic glutamate receptor (mGluR) and NMDAR-dependent forms. [W:] Encyclopedia of neuroscience. Larry R. S. (red.). Academic Press, Oxford.
  • Matsuzaki M., Honkura N., Ellis-Davies G. C., Kasai H., 2004. Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761-766.
  • McKinney R. A., Thompson S. M., 2009. Glutamate regulation of dendritic spine form and function. [W:] Encyclopedia of neuroscience. Larry R. S. (red.). Academic Press, Oxford.
  • Michaluk P., Wawrzyniak M., Alot P., Szczot M., Wyrembek P., Mercik K., Medvedev N., Wilczek E., De Roo M., Zuschratter W., Muller D., Wilczynski G. M., Mozrzymas J. W., Stewart M. G., Kaczmarek L., Wlodarczyk J., 2011. Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J. Cell Sci. 124, 3369-3380.
  • Monneron A., Bernhard W., 1969. Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastr. Res. 27, 266-288.
  • Nagerl U. V., Willig K. I., Hein B., Hell S. W., Bonhoeffer T., 2008. Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105, 18982-18987.
  • Neves G., Cooke S. F., Bliss T. V., 2008. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Rev. Neurosci. 9, 65-75.
  • Nimchinsky E. A., Sabatini B. L., Svoboda K., 2002. Structure and function of dendritic spines. Ann. Rev. Physiol. 64, 313-353.
  • Oray S., Majewska A., Sur, M., 2006. Effects of synaptic activity on dendritic spine motility of developing cortical layer v pyramidal neurons. Cerebral Cortex 16, 730-741.
  • Rodriguez A., Ehlenberger D. B., Dickstein D. L., Hof P. R., Wearne S. L., 2008. Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS ONE 3, e1997.
  • Ruszczycki B., Szepesi Z., Wilczynski G. M., Bijata M., Kalita K., Kaczmarek L., Wlodarczyk J., 2012. Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinform. 13, 213.
  • Sala C., Piech V., Wilson N. R., Passafaro M., Liu G., Sheng M., 2001. Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115-130.
  • Segal M., 2010. Dendritic spines, synaptic plasticity and neuronal survival: activity shapes dendritic spines to enhance neuronal viability. Europ. J. Neurosci. 31, 2178-2184.
  • Son J., Song S., Lee S., Chang S., Kim M., 2011. Morphological change tracking of dendritic spines based on structural features. J. Microscopy 241, 261-272.
  • Sorra K. E., Harris K. M., 2000. Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501-511.
  • Sweatt J. D., 2009a. Experience-dependent epigenetic modifications in the central nervous system. Biological psychiatry 65, 191-197.
  • Sweatt J. D. 2009b. Long-term potentiation (LTP). [W:] Encyclopedia of neuroscience. Larry R. S. (red.). Academic Press, Oxford.
  • Urdinguio R. G., Sanchez-Mut J. V., Esteller M., 2009. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056-1072.
  • Villagra N. T., Bengoechea R., Vaque J. P., Llorca J., Berciano M. T., Lafarga M., 2008. Nuclear compartmentalization and dynamics of the poly(A)-binding protein nuclear 1 (PABPN1) inclusions in supraoptic neurons under physiological and osmotic stress conditions. Mol. Cell. Neurosci. 37, 622-633.
  • Walczak A., Szczepankiewicz A. A., Ruszczycki B., Magalska A., Zamlynska K., Dzwonek J., Wilczek E., Zybura-Broda K., Rylski M., Malinowska M., Dabrowski M., Szczepinska T., Pawlowski K., Pyskaty M., Wlodarczyk J., Szczerbal I., Switonski M., Cremer M., Wilczynski G. M., 2013. Novel higher-order epigenetic regulation of the Bdnf gene upon seizures. J. Neurosci. 33, 2507-2511.
  • Xu T., Yu X., Perlik A. J., Tobin W. F., Zweig J. A., Tennant K., Jones T., Zuo Y., 2009. Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915-919.
  • Yamada S., Nelson W. J., 2007. Synapses: sites of cell recognition, adhesion, and functional specification. Ann. Rev. Biochem. 76, 267-294.
  • Yang G., Pan F., Gan W. B., 2009. Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920-924.
  • Yasumatsu N., Matsuzaki M., Miyazaki T., Noguchi J., Kasai H., 2008. Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592-13608.
  • Yuste R., Bonhoeffer T., 2001. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Ann. Rev. Neurosci. 24, 1071-1089.
  • Yuste R., Denk W., 1995. Dendritic spines as basic functional units of neuronal integration. Nature 375, 682-684.
  • Ziv N. E., Smith S. J., 1996. Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91-102.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv62p221kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.