Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 62 | 2 | 205-211

Article title

Mikroskopowe techniki korelacji fluorescencji

Authors

Content

Title variants

EN
Fluorescence correlation microscopy

Languages of publication

PL EN

Abstracts

PL
Ruchliwość molekuł ma fundamentalne znaczenie w wielu procesach fizycznych, chemicznych oraz biologicznych. Mikroskopowe pomiary z użyciem korelacji zmian (fluktuacji) fluorescencji pozwalają wyznaczyć współczynniki dyfuzji, stałe wiązania oraz stężenia znakowanych molekuł. Niniejszy artykuł opisuje podstawy pomiarów punktowych przy użyciu korelacji fluorescencji w czasie (FCS) oraz pochodnych metod wykorzystujących przestrzenną korelację fluorescencyjnego obrazu mikroskopowego i korelację czasowo-przestrzenną.
EN
Molecular mobility is crucial in numerous physical, chemical and biological processes. Microscopy measurements of fluorescence changes (fluctuations) can be used to estimate diffusion coefficients, binding constants and concentrations of labeled molecules. This short review describes the principles of point-wise microscopio measurements with fluorescence correlation spectroscopy. Furthermore, basics of its derivatives using spatial and spatio-temporal correlation of fluorescence microscopy data are given.

Keywords

Journal

Year

Volume

62

Issue

2

Pages

205-211

Physical description

Dates

published
2013

Contributors

author
  • Pracownia Obrazowania Struktury i Funkcji Tkanek Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska

References

  • Banting G., 2004. Photobleaching (FRAP/FLIP) and dynamic imaging. Encyclopedia of genetics, genomics, proteomics and bioinformatics. John Wiley & Sons, Ltd.
  • Becker W., Su B., Holub O., Weisshart K., 2011. FLIM and FCS Detection in Laser-Scanning Microscopes: Increased Efficiency by GaAsP Hybrid Detectors. Micr. Res. Techn. 74, 804-811.
  • Breusegem S. Y., Levi M., Barry N. P., 2006. Fluorescence correlation spectroscopy and fluorescence lifetime imaging microscopy. Nephron Exp. Nephrol. 103, e41-e49.
  • Cardarelli F., Gratton E., 2010. In vivo imaging of single-molecule translocation through nuclear pore complexes by pair correlation functions. PLoS One 5.
  • Carrero G., Crawford E., Th'Ng J., De Vries G., Hendzel M. J., 2004. Quantification of protein-protein and protein-DNA interactions in vivo, using fluorescence recovery after photobleaching. Meth. Enzymol. 375, 415-42.
  • Carrero G., McDonald D., Crawford E, De Vries G., Hendzel M. J., 2003. Using FRAP and mathematical modeling to determine the in vivo kinetics of nuclear proteins. Methods 29, 14-28.
  • Chen Y., Müller J. D., So P. T. C., Gratton E., 1999. The photon counting histogram in fluorescence fluctuation spectroscopy. Biophys. J. 77, 553-567.
  • Digman M. A., Brown C. M., Sengupta P., Wiseman P. W., Horwitz A. R., Gratton E., 2005. Measuring fast dynamics in solutions and cells with a laser scanning microscope. Biophys. J. 89, 1317-1327.
  • Digman M. A., Dalal R., Horwitz A. R., Gratton E., 2008. Mapping the number of molecules and brightness in the laser scanning microscope. Biophys. J. 94, 2320-2332.
  • Digman M. A., Gratton E., 2009. Analysis of diffusion and binding in cells using the RICS approach. Microsc. Res. Tech. 72, 323-332.
  • Digman M. A., Gratton E., 2011. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62, 645-68.
  • Digman M. A., Wiseman P. W., Choi C., Horwitz A. R., Gratton E., 2009. Stoichiometry of molecular complexes at adhesions in living cells. Proc. Natl. Acad. Sci. USA 106, 2170-2175.
  • Dobrucki J.,W., Feret D., Noatynska A., 2007. Scattering of exciting light by live cells in fluorescence confocal imaging: phototoxic effects and relevance for FRAP studies. Biophys. J. 93, 1778-1786.
  • Eigen M., Rigler R., 1994. Sorting single molecules - application to diagnostics and evolutionary biotechnology. Proc. Natl. Acad. Sci. USA 91, 5740-5747.
  • Hinde E., Cardarelli F., Digman M. A., Gratton E., 2010. In vivo pair correlation analysis of EGFP intranuclear diffusion reveals DNA-dependent molecular flow. Proc. Natl. Acad. Sci. USA 107, 16560-16565.
  • Hinde E., Cardarelli F., Digman M. A., Kershner A., Kimble J., Gratton E., 2011. The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis. Biophys. J. 100, 1829-1836.
  • Ishikawa-Ankerhold H. C., Ankerhold R., Drummen G. P., 2012. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 17, 4047-40132.
  • Kask P., Palo K., Ullmann D., Gall K., 1999. Fluorescence-intensity distribution analysis and its application in biomolecular detection technology. Proc. Natl. Acad. Sci. 96, 13756-13761.
  • Klonis N., Rug M., Harper I., Wickham M., Cowman A., Tilley L., 2002. Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. Biophys. J. 31, 36-51.
  • Kolin D. L., Ronis D., Wiseman P. W., 2006. k-Space image correlation spectroscopy: a method for accurate transport measurements independent of fluorophore photophysics. Biophys. J. 91, 3061-3075.
  • Kolin D. L., Wiseman P. W., 2007. Advances in image correlation spectroscopy: measuring number densities, aggregation states, and dynamics of fluorescently labeled macromolecules in cells. Cell Biochem. Biophys. 49, 141-164.
  • Koppel D. E., 1974. Statistical accuracy in fluorescence correlation spectroscopy. Physical Review A 10, 1938-1945.
  • Koppel D. E., Morgan F., Cowan A. E., Carson J. H., 1994. Scanning concentration correlation spectroscopy using the confocal laser microscope. Biophys. J. 66, 502-507.
  • Lakowicz J., 1999. Principles of Fluorescence Spectroscopy. New York, Boston, Dordrecht, London, Moscow: Kluwer Academic/Plenum Publishers.
  • Lam C. S., Mistri T. K., Foo Y. H., Sudhaharan T., Gan H. T., Rodda D., Lim L. H., Chou C., Robson P., Wohland T. i współaut., 2012. DNA-dependent Oct4-Sox2 interaction and diffusion properties characteristic of the pluripotent cell state revealed by fluorescence spectroscopy. Biochem. J. 448, 21-33.
  • Magde D., Elson E. L., Webb W. W., 1974. Fluorescence correlation spectroscopy. II. An experimental realization. Biopolymers. 13, 29-61.
  • Muller J.D., 2004. Cumulant analysis in fluorescence fluctuation spectroscopy. Biophys. J. 86, 3981-3992.
  • Nissim-Rafinia M., Meshorer E., 2011. Photobleaching assays (FRAP & FLIP) to measure chromatin protein dynamics in living embryonic stem cells. J. Vis. Exp. 52, e2696.
  • Palmer A. G., 3rd, Thompson N. L., 1987a. Theory of sample translation in fluorescence correlation spectroscopy. Biophys. J. 51, 339-343.
  • Palmer A. G., 3rd, Thompson N. L., 1987b. Molecular aggregation characterized by high order autocorrelation in fluorescence correlation spectroscopy. Biophys. J. 52, 257-270.
  • Pawley J., 2006. Handbook of biological confocal microscopy: Springer London, Limited.
  • Petersen N. O., 1986. Scanning fluorescence correlation spectroscopy. I. Theory and simulation of aggregation measurements. Biophys. J. 49, 809-815.
  • Reits E. A., Neefjes J. J., 2001. From fixed to FRAP: measuring protein mobility and activity in living cells. Nat. Cell Biol. 3, E145-E147.
  • Sankaran J., Bag N., Kraut R. S., Wohland T., 2013. Accuracy and Precision in Camera-Based Fluorescence Correlation Spectroscopy Measurements. Anal. Chem. 85, 3948-3954.
  • Singh A. P., Krieger J. W., Buchholz J., Charbon E., Langowski J., Wohland T., 2013. The performance of 2D array detectors for light sheet based fluorescence correlation spectroscopy. Opt. Express 21, 8652-8668.
  • Sprague B. L., McNally J. G., 2005. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15, 84-91.
  • Sprague B. L., Pego R. L., Stavreva D. A., McNally J.G., 2004. Analysis of Binding Reactions by Fluorescence Recovery after Photobleaching. Biophys. J. 86, 3473-3495.
  • Tian Y., Martinez M. M., Pappas D., 2011. Fluorescence correlation spectroscopy: a review of biochemical and microfluidic applications. Appl. Spectrosc. 65, 115A-124A.
  • Weissman M., Schindler H., Feher G., 1976. Determination of molecular weights by fluctuation spectroscopy: application to DNA. Proc. Natl. Acad. Sci. USA 73, 2776-2780.
  • Wotzlaw C., otto T., Berchner-Pfannschmidt U., Metzen E., Acker H., Fandrey J., 2007. Optical analysis of the HIF-1 complex in living cells by FRET and FRAP. FASEB J. 21, 700-707.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv62p205kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.