PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 62 | 2 | 181-192
Article title

Ruch pod mikroskopem - współczesne techniki badania adhezji i ruchliwości komórek

Authors
Content
Title variants
EN
Motion under the microscope - modern techniques for studying cell adhesion and motility
Languages of publication
PL EN
Abstracts
PL
Ruch komórek jest jedną z ich fundamentalnych cech. To dzięki niemu organizm może się rozwijać, układ odpornościowy działać, organy regenerować, a rany goić się. Badanie mechanizmów ruchu jest jednak jedną z trudniejszych metodycznie dziedzin biologii komórki. Procesy biochemicznie zachodzą bowiem w ruchliwych komórkach niesynchronicznie, a często takich komórek jest niewiele. Niniejszy artykuł poświęcono metodom mikroskopowym stworzonym by rozwiązać ten problem. Omawiane są metody pomiaru parametrów ruchu i adhezji do podłoża. Omawiane są również podstawy zastosowania klasycznych metod mikroskopowych do badania procesów ruchowych. Pokrótce wspominamy też o wykorzystaniu sond molekularnych do badania procesów sygnalizacji w komórkach ruchliwych, a także o mikroskopowych metodach eksperymentalnych, umożliwiających doświadczenia na pojedynczych komórkach.
EN
Ability to move is one of the fundamental functions of the living cells. It is due to the motility that organism develops, immune system can work, organs are able to regenerate and wound heal. In the same time motility studies are among methodologically most difficult ones. Biochemical processes underlying motility are notoriously unsynchronized and motile cells are usually not very numerous. Current paper reviews microscope techniques developed to solve those problems. We discuss basic measurements, parameterizing motility and substratum adhesion. Classical, structural microscopy used for motility studies are also sketched shortly. We describe also use of molecular probes for signaling studies in motile cells as well as we mention about microscopic experimental techniques, allowing experiments on single cells.
Keywords
Journal
Year
Volume
62
Issue
2
Pages
181-192
Physical description
Dates
published
2013
Contributors
  • Zakład Biochemii Instytut Biologii Doświadczalnej im. M. Nenckiego PAN Pasteura 3, 02-093 Warszawa, Polska
References
  • Axelrod D., 2001. Total internal reflection fluorescence microscopy in cell biology. Traffic 2, 764-774.
  • Bahnson A., Athanassiou C., Koebler D., Qian L., Shun T., Shields D., Yu H., Wang H., Goff J., Cheng T., Houck R., Cowsert L., 2005. Automated measurement of cell motility and proliferation. BMC Cell Biol. 6, 19.
  • Britland S., Morgan H., Wojiak-Stodart B., Riehle M., Curtis A., Wilkinson C., 1996. Synergistic and hierarchical adhesive and topographic guidance of BHK cells. Exp. Cell Res. 228, 313-325.
  • Brown E. B., Shear J. B., Adams S. R., Tsien R. Y., Webb W. W., 1999. Photolysis of caged calcium in femtoliter volumes using two-photon excitation. Biophys. J. 76, 489-499.
  • Codling E. A., Plank M. J., Benhamou S., 2008. Random walk models in biology. J. R. Soc. Interface 5, 813-834.
  • Curtis A. S., 1964. The mechanism of adhesion of cells to glass. A study by interference reflection microscopy. J. Cell Biol. 20, 199-215.
  • Curtis A., Wilkinson C., 1997. Topographical control of cells. Biomaterials 18, 1573-1583.
  • Damljanovic V., Lagerholm B. C., Jacobson K., 2005. Bulk and micropatterned conjugation of extracellular matrix proteins to characterized polyacrylamide substrates for cell mechanotransduction assays. Biotechniques 39, 847-851.
  • Davidson M., Abramowitz M., 2002. Optical microscopy. [W] Encyclopedia of imaging science and technology. Hornak J. (red.). Wiley-Interscience, New York, 1106-1141.
  • Dembo M., Oliver T., Ishihara A., Jacobson K., 1996. Imaging the traction stresses exerted by locomoting cells with the elastic substratum method. Biophys. J. 70, 2008-2022.
  • Dickinson R. B., Tranquillo R. T., 1993. Optimal estimation of cell movement indices from the statistical analysis of cell tracking data. AIChE J. 39, 1995-2010.
  • DiMilla P. A., Barbee K., Lauffenburger D. A., 1991. Mathematical model for the effects of adhesion and mechanics on cell migration speed. Biophys. J. 60, 15-37.
  • DiMilla P. A., Stone J. A., Quinn J. A., Albelda S. M., Lauffenburger D. A., 1993. Maximal migration of human smooth muscle cells on fibronectin and type IV collagen occurs at an intermediate attachment strength. J. Cell Biol. 122, 729-737.
  • Doyle A. D., Lee J., 2005. Cyclic changes in keratocyte speed and traction stress arise from Ca2+-dependent regulation of cell adhesiveness. J. Cell Sci. 118, 369-379.
  • Evans J. G., Correia I., Krasavina O., Watson N., Matsudaira P., 2003. Macrophage podosomes assemble at the leading lamella by growth and fragmentation. J. Cell Biol. 161, 697-705.
  • Franck C., Maskarinec S. A., Tirrell D. A., Ravichandran G., 2011. Three-dimensional traction force microscopy: a new tool for quantifying cell-matrix interactions. PLoS One 6, e17833.
  • Friedl P., Noble P. B., Zanker K. S., 1993. Lymphocyte locomotion in three-dimensional collagen gels. Comparison of three quantitative methods for analysing cell trajectories. J. Immunol. Methods 165, 157-165.
  • Grebecki A., Klopocka W., 1981. Functional interdependence of pseudopodia in Amoeba proteus stimulated by light-shade difference. J. Cell Sci. 50, 245-258.
  • Hamahashi S., Onami S., Kitano H., 2005. Detection of nuclei in 4D Nomarski DIC microscope images of early Caenorhabditis elegans embryos using local image entropy and object tracking. BMC Bioinform. 6, 125.
  • Harris A. K., Wild P., Stopak D., 1980. Silicone rubber substrata: a new wrinkle in the study of cell locomotion. Science 208, 177-179.
  • Heid P. J., Voss E., Soll D. R., 2002. 3D-DIASemb: a computer-assisted system for reconstructing and motion analyzing in 4D every cell and nucleus in a developing embryo. Dev. Biol. 245, 329-347.
  • Holt M. R., Calle Y., Sutton D. H., Critchley D. R., Jones G. E., Dunn G. A., 2008. Quantifying cell-matrix adhesion dynamics in living cells using interference reflection microscopy. J. Microsc. 232, 73-81.
  • Jacobson K., Rajfur Z., Vitriol E., Hahn K., 2008. Chromophore-assisted laser inactivation in cell biology. Trends Cell Biol. 18, 443-450.
  • Korohoda W., Golda J., Sroka J., Wojnarowicz A., Jochym P., Madeja Z., 1997. Chemotaxis of Amoeba proteus in the developing pH gradient within a pocket-like chamber studied with the computer assisted method. Cell Motil. Cytoskel. 38, 38-53.
  • Langenberg T., Dracz T., Oates A. C., Heisenberg C. P., Brand M., 2006. Analysis and visualization of cell movement in the developing zebrafish brain. Dev. Dyn. 235, 928-933.
  • Lee H. M., Larson D. R., Lawrence D. S., 2009. Illuminating the chemistry of life: design, synthesis, and applications of 'caged' and related photoresponsive compounds. ACS Chem. Biol. 4, 409-427.
  • Lee J., Leonard M., Oliver T., Ishihara A., Jacobson K., 1994. Traction forces generated by locomoting keratocytes. J. Cell Biol. 127, 1957-1964.
  • Lee J., Ishihara A., Oxford G., Johnson B., Jacobson K., 1999. Regulation of cell movement is mediated by stretch-activated calcium channels. Nature 400, 382-386.
  • Melvin A. T., Welf E. S., Wang Y., Irvine D. J., Haugh J. M., 2011. In chemotaxing fibroblasts, both high-fidelity and weakly biased cell movements track the localization of PI3K signaling. Biophys. J. 100, 1893-1901.
  • Oliver T., Lee J., Jacobson K., 1994. Forces exerted by locomoting cells. Semin. Cell Biol. 5, 139-147.
  • Partin A. W., Schoeniger J. S., Mohler J. L., Coffey D. S., 1989. Fourier analysis of cell motility: correlation of motility with metastatic potential. Proc. Natl. Acad. Sci. USA 86, 1254-1258.
  • Patlak C. S., 1953. Random walk with persistence and external bias. Bull Math. Biophys. 15, 311-338.
  • Pearson K., 1905. The problem of the random walk. Nature 72, 294.
  • Pletjushkina O. J., Rajfur Z., Pomorski P., Oliver T. N., Vasiliev J. M., Jacobson K. A., 2001. Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil. Cytoskel. 48, 235-244.
  • Pluta M., 1982. Mikroskopia optyczna. PWN, Warszawa.
  • Pollard T. D., Blanchoin L., Mullins R. D., 2001. Actin dynamics. J. Cell Sci. 114, 3-4.
  • Pomorski P., 2012. Zobaczyć sygnał - metody obrazowania zmian stężenia jonów wapnia w komórce Postepy Biochem. 58, 465-473.
  • Pomorski P., Watson J. M., Haskill S., Jacobson K. A., 2004. How adhesion, migration, and cytoplasmic calcium transients influence interleukin-1beta mRNA stabilization in human monocytes. Cell Motil. Cytoskel. 57, 143-157.
  • Rajfur Z., Roy P., Otey C., Romer L., Jacobson K., 2002. Dissecting the link between stress fibres and focal adhesions by CALI with EGFP fusion proteins. Nat. Cell Biol. 4, 286-293.
  • Roy P., Rajfur Z., Jones D., Marriott G., Loew L., Jacobson K., 2001. Local photorelease of caged thymosin beta4 in locomoting keratocytes causes cell turning. J. Cell Biol. 153, 1035-1048.
  • Serra-Picamal X., Conte V., Vincent R., Anon E., Tambe D. T., Bazellieres E., Butler J. P., Fredberg J. J., Trepat X., 2012. Mechanical waves during tissue expansion. Nature Physics 8, 628-634.
  • Singer I. I., Kazazis D. M., Scott S., 1989. Scanning electron microscopy of focal contacts on the substratum attachment surface of fibroblasts adherent to fibronectin. J. Cell Sci. 93, 147-154.
  • Sochol R. D., Higa A. T., Janairo R. R. R., Lib S., Lina L., 2011. Unidirectional mechanical cellular stimuli via micropost array gradients. Soft Matter 7, 4606-4609.
  • Soll D. R., Voss E., 1998. Two and three-dimensional computer systems for analyzing how cells crawl. [W] Motion Analysis of Living Cells. Soll D. R., Wessels D. (red.). Wiley-Liss, New York, 25-52.
  • Soll D. R., Voss E., Johnson O., Wessels D., 2000. Three-dimensional reconstruction and motion analysis of living, crawling cells. Scanning 22, 249-257.
  • Soon L., Mouneimne G., Segall J., Wyckoff J., Condeelis J., 2005. Description and characterization of a chamber for viewing and quantifying cancer cell chemotaxis. Cell Motil. Cytoskel. 62, 27-34.
  • Suraneni P., Rubinstein B., Unruh J. R., Durnin M., Hanein D., Li R., 2012. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239-251.
  • Svitkina T. M., Borisy G. G., 1999. Arp2/3 complex and actin depolymerizing factor/cofilin in dendritic organization and treadmilling of actin filament array in lamellipodia. J. Cell Biol. 145, 1009-1026.
  • Thery M., 2010. Micropatterning as a tool to decipher cell morphogenesis and functions. J. Cell Sci. 123, 4201-4213.
  • Tojkander S., Gateva G., Lappalainen P., 2012. Actin stress fibers--assembly, dynamics and biological roles. J. Cell Sci. 125, 1855-1864.
  • Waiczies H., Guenther M., Skodowski J., Lepore S., Pohlmann A., Niendorf T., Waiczies S., 2013. Monitoring dendritic cell migration using 19F /1H magnetic resonance imaging. J. Vis. Exp. e50251.
  • Weiger M. C., Wang C. C., Krajcovic M., Melvin A. T., Rhoden J. J., Haugh J. M., 2009. Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts. J. Cell Sci. 122, 313-323.
  • Welf E. S., Ahmed S., Johnson H. E., Melvin A. T., Haugh J. M., 2012. Migrating fibroblasts reorient directionality by a metastable, PI3K-dependent mechanism. J. Cell Biol. 197, 105-114.
  • Wolfenson H., Bershadsky A., Henis Y. I., Geiger B., 2011. Actomyosin-generated tension controls the molecular kinetics of focal adhesions. J. Cell Sci. 124, 1425-1432.
  • Wolfenson H., Lavelin I., Geiger B., 2013. Dynamic regulation of the structure and functions of integrin adhesions. Dev. Cell 24, 447-458.
  • Wu M. M., Llobet A., Lagnado L., 2009. Loose coupling between calcium channels and sites of exocytosis in chromaffin cells. J. Physiol. 587, 5377-5391.
  • Xiao H., Li Y., Du J., Mosig A., 2010. Ct3d: tracking microglia motility in 3D using a novel cosegmentation approach. Bioinformatics 27, 564-571.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv62p181kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.