PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2013 | 62 | 1 | 115-127
Article title

Roślinne efektory cyklicznych nukleotydów

Content
Title variants
EN
Plant effectors of cyclic nucleotides.
Languages of publication
PL EN
Abstracts
PL
Mechanizmy, za pomocą których sygnały wewnątrz- i zewnątrzkomórkowe wywołują specyficzną odpowiedź biologiczną są istotne dla regulacji funkcji komórek, procesów wzrostu i rozwoju oraz odpowiedzi na zmiany środowiska. W ostatnich latach dokonał się ogromny postęp w badaniu elementów zaangażowanych w regulację procesów zachodzących w komórkach roślinnych o czym świadczy olbrzymia ilość publikacji poruszających problem sygnalizacji komórkowej. Cykliczne nukleotydy (cNMP) są cząsteczkami sygnalnymi, których obecność i zaangażowanie w szereg procesów w komórkach roślinnych nie budzą już wątpliwości. Z fizjologicznego punktu widzenia, stężenie cNMP w miejscu ich działania nie może być ani za wysokie ani za niskie, a jest to normowane przez odpowiednie układy generujące i inaktywujące cykliczne nukleotydy. Ponadto na końcowy efekt biologiczny ma wpływ sprawność systemów efektorowych wrażliwych na zmiany stężenia cyklicznych nukleotydów takich jak fosfodiesterazy, kinazy regulowane lub zależne od cNMP i kanały bramkowane cyklicznymi nukleotydami. W pracy tej podsumowano aktualną wiedzę dotyczącą efektorów cyklicznych nukleotydów, skupiając się zarówno na ich budowie, jak i aspekcie ich funkcjonowania w komórkach roślinnych.
EN
The mechanisms by which intra- and extracellular signals induce a specific biological response are important for the regulation of cell function, processes of growth and development and responses to environmental changes. In recent years, enormous progress has been made in studies of elements involved in the regulation of processes occurring in plant cells. Cyclic nucleotides (cNMP) are signaling molecules whose presence and involvement in a number of processes in plant cells is well documented. From the physiological point of view, the concentration of cNMP's at a site of their action could be neither too high nor too low, as it is controlled by the systems that lead to their synthesis or inactivation. In addition, the final biological effect depends on the efficiency of the effector systems such as cyclic nucleotide phosphodiesterases, cNMP-dependent or cNMP-regulated protein kinase and cyclic-nucleotide gated channels, that are sensitive to changes in cNMP concentration. In this paper we summarize the current knowledge on the cyclic nucleotide effectors, focusing both on their structure and functioning in plant cells.
Keywords
Journal
Year
Volume
62
Issue
1
Pages
115-127
Physical description
Dates
published
2013
Contributors
  • Uniwersytet Mikołaja Kopernika Katedra Fizjologii Roślin i Biotechnologii Lwowska 1, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika Katedra Fizjologii Roślin i Biotechnologii Lwowska 1, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika Katedra Fizjologii Roślin i Biotechnologii Lwowska 1, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika Katedra Fizjologii Roślin i Biotechnologii Lwowska 1, 87-100 Toruń, Polska
References
  • Ali R., Zielinski R. E., Berkowitz G. A., 2006. Expression of plant cyclic nucleotide-gated cation channels in yeast. J. Exp. Bot. 57, 125-138.
  • Ali R., Ma W., Lemtiri-Chlieh F., Tsaltas D., Leng Q., Von Bodman S., Berkowitz G. A., 2007. Death don't have no mercy and neither does calcium: Arabidopsis cyclic nucleotide gated channel 2 and innate immunity. Plant Cell 19, 1081-1095.
  • Arazi T., Sunkar R., Kaplan B., Fromm H., 1999. A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J. 20, 171-182.
  • Ashman D. F., Lipton R., Melicow M. M., Price T. D. 1963. Isolation of adenosine 3',5'-monophosphate and guanosine 3',5'-monophosphate from rat urine. Biochem. Biophys. Res. Commun. 11, 330-334.
  • Balagué C., Lin B., Alcon C., Flottes G., Malmström S., Köhler C., 2003. HLM1, and essential signaling component in the hypersensitive response, is a member of the cyclic nucleotide-gated channel ion channel family. Plant Cell 15 , 365-379.
  • Baxter J., Moeder W., Urquhart W., Shahinas D., Chin K., Christendat D., Kang H. G., Angelova M., Kato N., Yoshioka K., 2008. Identification of a functionally essential amino acid for Arabidopsis cyclic nucleotide gated ion channels using the chimeric AtCNGC11/12 gene. Plant J. 56, 457-469.
  • Beavo J. A., 1995. Cyclic-nucleotide phosphodiesterases: Functional implications of multiple isoforms. Physiol Rev. 75, 725-748.
  • Biermann B., Johnson E. M., Feldman L. J., 1990. Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinase. Plant Physiol. 94, 1609-1615.
  • Bock K. W., Honys D., Ward J. M., Padmanaban S., Nawrocki E. P., Hirschi K. D., Twell D., Sze H., 2006. Integrating membrane transport with male gametophyte development and function through transcriptomics. Plant Physiol. 140, 1151-1168.
  • Bouché N., Yellin A., Snedden W. A., Fromm H., 2005. Plant-specific calmodulin-binding proteins. Annu. Rev. Plant Biol. 56, 435-466.
  • Bridges D., Fraser M. E., Moorhead G. B. G., 2005. Cyclic nucleotide binding proteins in the Arabidopsis thaliana and Oryza sativa genomes. BMC Bioinformat. 6, 6.
  • Chan C. W. M., Schorrak L. M., Smith R. K., Bent A. F., Sussman M. R., 2003. A cyclic nucleotide-gated ion channel, CNGC2, is crucial for plant development and adaptation to calcium stress. Plant Physiol. 132, 728-731.
  • Chan C. W. M., Wohlbach D. J., Rodesch M. J., Sussman M. R., 2008. Transcriptional changes in response to growth of Arabidopsis in high external calcium. FEBS Lett. 582, 967-976.
  • Chiatante D., Newton R. P., Crignola S., Levi M., Brown E. G., 1990. The 3',5'-cyclic nucleotide phosphodiesterase of meristematic and differentiated tissues of pea roots. Phytochemistry 29, 2815-2820.
  • Chin K., Moeder W., Mosher S., Urquhart W., Yoshioka K., 2008. The roles of the Arabidopsis cyclic nucleotide-gated ion channels, AtCNGC11 and 12 in abiotic and biotic stress responses. Annual Meeting of the Canadian Society of Plant Physiologists, 14-17 Ottawa.
  • Chin K., Moeder W., Yoshioka K., 2009. Biological roles of cyclic-nucleotide-gated ion channels in plants: What we know and don't know about this 20 members ion channel family. Botany 87, 668-677.
  • Christopher D. A., Borsics T., Yuen C. Y., Ullmer W., Andème-Ondzighi C., Andres M. A., 2007. The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biol. 7 , 48.
  • Clough S. J., Fengler K. A., Yu I.-C., Lippok B., Smith R. K. Jr., Bent A. F., 2000. The Arabidopsis dnd1 'defense, no death' gene encodes a mutated cyclic nucleotide-gated ion channel. Proc. Natl. Acad. Sci. USA 97, 9323-9328.
  • Corbin J. D., Francis S. H., 1999. Cyclic GMP phosphodiesterase-5: Target of sildenafil. J. Biol. Chem. 274, 13729-13732.
  • Cousson A., Vavasseur A., 1998. Putative involvement of cytosolic Ca2+ and GTP-binding proteins in cyclic-GMP-mediated induction of stomatal opening by auxin in Commelina communis L. Planta 2006, 308-314.
  • Craven K. B., Zagotta W. N., 2006. CNG and HCN channels: two peas, one pod. Annu. Rev. Physiol. 68, 375-401.
  • Dietrich P., Anschutz U., Kugler A., Becker D., 2010. Physiology and biophysics of plant ligand-gated ion channels. Plant Biol. 12, 80-93.
  • Dubovskaya LV., Molchan OV., Volotovski ID., 2001. Photoregulation of the endogenous cGMP content in oat seedlings. J. Plant Physiol. 48, 26-29.
  • Dupon M., Van Onckelen H. A., De Greek J. A., 1987. Characterisation of cyclic nucleotide phosphodiesterase activity in Phaseolus vulgaris. Physiol Plant. 69, 361-365.
  • Friedrich P., curvetto N., Giusto N., 1999. Cyclic AMP-dependent protein phosphorylation in guard cell protoplasts of Vicia faba L. Biocell 23, 203-210.
  • Frietsch S., Wang Y. F., Sladek C., Poulsen L. R., Romanowsky S. M., Schroeder J. I., Harper J. F., 2007. A cyclic nucleotide-gated channel is essential for polarized tip growth of pollen. Proc. Natl. Acad. Sci. USA 104, 14531-14536.
  • Gobert A., Park G., Amtmann A., Sanders D., Maathuis F. J., 2006. Arabidopsis thaliana cyclic nucleotide gated channel 3 forms a non-selective ion transporter involved in germination and cation transport. J. Exp. Bot. 57, 791-800.
  • Gomez-Cadenas A., Zentella A., Walker-Simmons M., Ho T. H. D., 2001. Gibberellin/abscisic acid antagonism in barley aleuronic cells: site of action of the protein kinase PKABAI in relation to gibberellin signaling molecules. Plant Cell 13, 667-679.
  • Hammond R. W., Zhao Y., 2000. Characterisation of a tomato protein kinase gene induced by infection by potato spindle tuber viroid. Mol. Plant Microbe Interact. 13, 903-910.
  • Hua B. G., Mercier R. W., Leng Q., Berkowitz G. A., 2003a. Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol. 132, 1353-1361.
  • Hua B. G., Mercier R. W., Zielinski R. E., Berkowitz G. A., 2003b. Functional interaction of calmodulin with a plant cyclic nucleotide gated cation channel. Plant Physiol. Biochem. 41, 945-954.
  • Janistyn B., 1989. cAMP promoted protein phosphorylation of dialysed coconut milk. Phytochem. 28, 329-331.
  • Jurkowski G. I., Smith R. K., Yu I. C., Ham J. H., Sharma S. B., Klessig D. F., Fengler K. A., Bent A. F., 2004. Arabidopsis DND2, a second cyclic nucleotide-gated ion channel gene for which mutation causes the 'defense, no death' phenotype. Mol. Plant Microbe Interact. 17, 511-520.
  • Kaplan B., Herman T., Fromm H., 2007. Cyclic nucleotide-gated channels in plants. FEBS Lett. 581, 2237-2246.
  • Kato R., Uno L., Ishikawa T., Fujii T., 1983. Effects of cAMP on the activity of soluble protein kinases in Lemna paucicostata. Plant Cell Physiol. 24, 841-848.
  • Komatsu S., Hirano H., 1993. Protein kinase activity and protein phosphorylation in rice (Oryza sativa L.) leaf. Plant Sci. 94, 127-137.
  • Krupa A., Anamika A., Srinvasan N., 2006. Genome-wide comparative analyses of domain organization of repertoires of protein kinases of Arabidopsis thaliana and Oryza sativa. Gene 380, 1-13.
  • Lawton M. A., Yamamoto R. T., Hanks S. K., Lamb C. J., 1989. Molecular cloning of plant transcripts encoding protein kinase homologs. Proc. Natl. Acad. Sci. USA 86, 3140-3144.
  • Lee S. H., Johnson J. D., Wlash M. P., Van Lierop J. E., Sutherland C., Xu A. D., Snedden W. A., Kosk-Kosiska D., Fromm H., Narayanan N., Cho M. J., 2000. Differential regulation of Ca2+/calmodulin-dependent enzymes by plant calmodulin isoforms and free Ca2+ concentration. Biochem. J. 350, 299-306.
  • Lemtiri-Chlieh F., Berkowitz G. A., 2004. Cyclic adenosine monophosphate regulates calcium channels in the plasma membrane of Arabidopsis leaf guard and mesophyll cells. J. Biol. Chem. 279, 35306-35312.
  • Leng Q., Mercier R. W., Yao W., Berkowitz G. A., 1999. Cloning and first functional characterization of a plant cyclic nucleotide-gated cation channel. Plant Physiol. 121, 753-761.
  • Leng Q., Mercier R. W., Hua B. G., Fromm H., Berkowitz G. A., 2002. Electrophysiological analysis of cloned cyclic nucleotide-gated ion channels. Plant Physiol. 128, 400-408.
  • Li X., Borsics T., Harrington H. M., Christopher D. A., 2005. Arabidopsis AtCNGC10 rescues potassium channel mutants of E.coli, yeast, and Arabidopsis and is regulated by calcium/calmodulin and cyclic GMP in E.coli. Funct. Plant Biol. 32, 643-653.
  • Lin X., Feng X.H., Watson J.C., 1991. Differential accumulation of transcripts encoding protein kinaze homologs in greening pea seedlings. Proc. Natl. Acad. Sci. USA 88, 6951-6955.
  • Ma W., Ali R., Berkowitz G. A., 2006. Characterization of plant phenotypes associated with loss-of-function of AtCNGC1, a plant cyclic nucleotide gated cation channel. Plant Physiol. Biochem. 44, 494-505.
  • Ma W., Smigel A., Verma R., Berkowitz G. A., 2009. Cyclic nucleotide gated channels and related signaling components in plant innate immunity. Plant Signal. Behav. 4, 277-282
  • Martinez-Atienza J., Van Ingelgem C., Roef L., Maathuis F. J. M., 2007. Plant cyclic nucleotide signaling. Plant Signal. Behav. 2, 540-543.
  • Mäser P., Thomine S., Schroeder J. I., Ward J. M., Hirschi K., Sze H., 2001. Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol. 126, 1646-1667.
  • Meier S., Ruzvidzo O., Morse M., Donaldson L., Kwezi L., Gehring C., 2010. The Arabidopsis wall associated kinase-like 10 gene encodes a functional guanylyl cyclase and is co-expressed with pathogen defense related genes. PLoS ONE 5, e8904.
  • Moutinho A., Hussey P. J., Trewavas A. J., Malhó R., 2001. cAMP acts as a second messenger in pollen tube growth and reorientation. Proc. Natl. Acad. Sci. USA 98, 10481-10486.
  • Newton R. P., Smith C. J., 2004. Cyclic nucleotides. Phytochemistry 65, 2423-2437.
  • Pilot G., Pratelli R., Gaymard F., Meyer Y., Sentenac H., 2003. Five-group distribution of the shaker-like K+ channel family in higher plants. J. Mol. Evol. 56, 418-434.
  • Polya G. M., Chung R., Menting J., 1991. Resolution of a higher plant protein kinase similar to the catalytic subunit of cyclic AMP-dependent protein kinase. Plant Sci. 79, 37-45.
  • Rall T. W., Sutherland E. W., Berthet J., 1957. The relationship of epinephrine and glucagon to liver phosphorylase. IV. Effect of epinephrine and glucagon on the reactivation of phosphorylase in liver homogenates. J. Biol. Chem. 224, 463-475.
  • Rehmann H., Wittinghofer A., Bos JL., 2007. Capturing cyclic nucleotides in action: snapshots from crystallographic studies. Natl. Rev. 8, 63-73.
  • Schuurink R. C., Shartzer S. F., Fath A., Jones R. L., 1998. Characterization of a calmodulin-binding transporter from the plasma membrane of barley aleurone. Proc. Nat. Acad. Sci. USA. 95, 1944-1949.
  • Sherman T., Fromm H., 2009. Physiological roles of cyclic nucleotide gated channels in plants. [W:] Signaling in plants . Baluske F., Mancuso S. (red.). Springer-Verlag, Berlin Heildenberg, 91-107.
  • Sunkar R., Kaplan B., Bouché N., Arazi T., Dolev D., Talke I.N., Maathuis F. J. M., Sanders D., Bouchez D., Fromm H., 2000. Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J. 24, 533-542.
  • Szalaty M., 2004. Udział cGMP w szlakach transdukcji sygnałów w komórkach roślinnych. Post. Biol. Kom. 30, 31-46
  • Szmidt-Jaworska A., 2011. Roślinne cyklazy nukleotydów purynowych. Post. Biochem. 56, 409-417.
  • Szmidt-Jaworska A., Jaworski K., Tretyn A., Kopcewicz J., 2003. Biochemical evidence for a cGMP-regulated protein kinase in Pharbitis nil. Phytochem. 63, 635-642.
  • Szmidt-Jaworska A., Jaworski K., Kopcewicz J., 2007. Cykliczne nukleotydy u roślin wyższych. Post. Biol. Kom. 34, 49-67.
  • Szmidt-Jaworska A., Jaworski K., Kopcewicz J., 2009. Cyclic GMP stimulates induction of Pharbitis nil via its influence on cGMP regulated protein kinase. Plant Growth Regul. 57, 115-126.
  • Urquhart W., Gunawardena A. H. L. A. N., Moeder W., Ali R., Berkowitz G. A., Yoshioka K., 2007. The chimeric cyclic nucleotide-gated ion channel ATCNGC11/12 constitutively induces programmed cell death in a Ca2+ dependent manner. Plant Mol. Biol. 65, 747-761.
  • Yoshioka K., Kachroo P., Tsui F., Sharma S. B., Shah J., Klessig D. F., 2001. Environmentally sensitive, SA-dependent defense responses in the cpr22 mutant of Arabidopsis. Plant J. 26, 447-459.
  • Yoshioka K., Moeder W., Kang H. G., Kachroo P., Masmoudi K., Berkowitz G., Klessig D. F., 2006. The chimeric Arabidopsis cyclic nucleotide-gated ion channel 11/12 activates multiple pathogen resistance responses. Plant Cell 18, 747-763.
  • Yuen C. Y. L., Christopher D. A., 2010. The role of cyclic nucleotide-gated channels in cation nutrition and abiotic stress. [W:] Signaling in plants . Demidchik V., Maathuis F. (red.). Springer-Verlag, Berlin Heildenberg, 137-159.
  • Zagotta W. N., Siegelbaum S. A., 1996. Structure and function of cyclic nucleotide-gated channels. Annu. Rev. Neurosci. 19, 235-263.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv62p115kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.