Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2013 | 62 | 1 | 105-113

Article title

Roślinne transportery błonowe metali śladowych

Content

Title variants

EN
Trace metals membrane transporters in plants.

Languages of publication

PL EN

Abstracts

PL
Metale śladowe obecne w roztworze glebowym można podzielić na dwie grupy: metale konieczne do prawidłowego funkcjonowania komórek roślinnych (m.in. Fe, Cu, Mn, Co, Zn, Ni) oraz metale niekonieczne (np. Cd, Hg, Pb, Cr). Obecne w roślinach białka transportujące niezbędne metale z gleby do korzenia i dalej do pędu charakteryzują się szeroką specyficznością, stanowiąc drogę wnikania także dla metali niekoniecznych. Utrzymywanie homeostazy poprzez kontrolowanie pobierania, transportu, wypompowywania i sekwestracji tych pierwiastków jest kluczowe dla prawidłowego działania organizmów. Praca ta została poświęcona krótkiej charakterystyce zidentyfikowanych do tej pory roślinnych transporterów błonowych, należących do następujących rodzin białek: ZIP, YSL, NRAMP, P1B-ATP-az, transporterów ABC, COPT, CAX, CDF i IREG.
EN
Trace metals present in soil can be divided into two groups: essential metals indispensable for proper functioning of plant cells (e.g. Fe, Cu, Mn, Co, Zn, Ni), and non-essential metals (e.g. Cd, Hg, Pb, Cr). Transporters for essential trace metals in plants usually have a wide specificity and can equally transport non-essential metals. Maintaining homeostasis by controlling the uptake, transport, removal and sequestration of metals is crucial for organisms. This work is dedicated to a short characterization of identified plant membrane transporters, belonging to several protein families: ZIP, YSL, NRAMP, P1B-ATP-ases, ABC transporters, COPT, CAX, CDF and IREG.

Keywords

Journal

Year

Volume

62

Issue

1

Pages

105-113

Physical description

Dates

published
2013

Contributors

  • Zakład Biochemii Instytut Biologii Molekularnej i Biotechnologii Collegium Biologicum Umultowska 89, 61-614 Poznań, Polska

References

  • Catty P., Boutigny S., Miras R., Joyard J., Rolland N., Seigneurin-Berny D., 2011. Biochemical characterization of AtHMA6/PAA1, a chloroplast envelope Cu(I)-ATPase. J. Biol. Chem. 286, 36188-36197.
  • Colangelo E. P., Guerinot M. L., 2006. Put the metal to the petal: metal uptake and transport throughout plants. Cur. Opin. Plant Biol. 9, 322-330.
  • Dräger D., Debrosses-Fonrouge A.-G., Krach C., Chardonnens A., Meyer R., Saumitou-Laprade P., Krämer U., 2004. Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels. Plant J. 39, 425-439.
  • Haydon M. J., Cobbett C. S., 2007. Transporters of ligands for essentials metal ions in plants. New Phytol. 174, 499-506.
  • Jadia C. D., Fulekar M. H., 2009. Phytoremediation of heavy metals: Recent techniques. Afr. J. Biotechnol. 8, 921-928.
  • Jasiński M., Figlerowicz M., 2006. Roślinne transportery ABC - rodzina z tradycjami. Postępy Biochemii 52, 296-302.
  • Kim D.-Y., Bovet L., Maeshima M., Martinoia E., Lee Y., 2007. The ABC transporter AtPDR8 is a cadmium extrusion pump conferring heavy metal resistance. Plant J. 50, 207-218.
  • Kotrba P., Najmanova J., Macek T., Ruml T., Mackova M., 2009. Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol. Adv. 27, 799-810.
  • Krämer U., Talke I. N., Hanikenne M., 2007. Transition metal transport. Fed. Eur. Biochem. Soc. Lett. 581, 2263-2272.
  • Krzesłowska M., 2011. The cell wall in plant cell response to trace metals: polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 33, 35-51.
  • Krzesłowska M., Samardakiewicz S., Woźny A., 2010. Metale śladowe. [W:] Reakcje komórek roślin na czynniki stresowe. Tom 2. Woźny A., Goździcka-Józefiak A. (red.). Wydawnictwo Naukowe Uniwersytetu im. Adama Mickiewicza w Poznaniu, Poznań, 90-146.
  • Küpper H., Kochian L. V., 2010. Transcriptional regulation of metal transort gened and mineral nutrition during acclimatization to cadmium and zinc in the Cd/Zn hyperaccumulator, Thlaspi caerulescens (Ganges population). New Phytol. 185, 11-129.
  • Lux A., Martinka M., Vaculik M., White P. J., 2011. Root responses to cadmium in the rhizosphere: a review. J. Exp. Bot. 62, 21-37.
  • Maestri E., Marmiroli M., Visioli G., Marmiroli N., 2010. Metal tolerance and hyperaccumulation: Costs and trade-offs between traits and environment. Environ. Exp. Bot. 68, 1-12.
  • Migocka M., Nowojska E., Kłobus G., 2007. Wtórne transportery metali ciężkich u roślin. Postępy Biochemii 53, 272-279.
  • Miransari M., 2011. Hyperaccumulators, arbuscular mycorrhizal fungi and stress of heavy metals. Biotechnol. Adv. 29, 645-653.
  • Nagajyoti P. C., Lee K. D., Sreekanth T. V. M., 2010. Heavy metals, occurrence and toxicity for plants: a review. Environ. Chem. Lett. 8, 199-216.
  • Oomen R., Wu J., Lelièvre F., Blanchet S., Richaud P., Barbier-Brygoo H., Aarts M., Thomine S., 2009. Functional characterization of NRAMP3 and NRAMP4 from the metal hyperaccumulator Thlaspi caerulescens. New Phytol. 181, 637-650.
  • Palmer C. M., Guerinot M. L., 2009. Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chem. Biol. 5, 333-340.
  • Peralta-Videa J. R., Lopez M. L., Narayan M., Saupe G., Gardea-Torresdey J., 2009. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. Int. J. Biochem. Cell Biol. 41, 1665-1677.
  • Pilon M., Cohu C. M., Ravet K., Abdel-Ghany S. E., Gaymard F., 2009. Essential transition metal homeostasis in plants. Cur. Opin. Plant Biol. 12, 347-357.
  • Puig S., Peñarrubia L., 2009. Placing metal micronutrients in context: transport and distribution in plants. Cur. Opin. Plant Biol. 12, 299-306.
  • Punshon T., Hirschi K., Yang J., Lanzirotti A., Lai B., Guerinot M. L., 2012. The role of CAX1 and CAX3 in elemental distribution and abundance in Arabidopsis seed. Plant Physiol. 158, 352-362.
  • Rascio N., Navari-Izzo F., 2011. Heavy metal hyperaccumulating plants: How and why do they do it? And what makes them so interesting? Plant Sci. 180, 169-181.
  • Roosens N., Willems G., Saumitou-Laprade P., 2008. Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci. 13, 208-215.
  • Schröder P., 2009. Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ. Exp. Bot. 67, 10-22.
  • Siwek M., 2008. Biologiczne sposoby oczyszczania środowiska - fitoremediacja. Wiadomości Botaniczne 52, 23-28.
  • Takahashi M., Nozoye T., Kitajima N., Fukuda N., Hokura A., Terada Y., Nakai I., Ishimaru Y., Kobayashi T., Nakanisji H., Nishizawa N. K., 2009. In vivo analysis of metal distribution and expression of metal transporters in rise seed Turing germination process by microarray and X-ray Fluorescence Imaging of Fe, Zn, Mn, and Cu. Plant Soil 325, 39-51.
  • Verbruggen N., Hermans C., Schat H., 2009. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 181, 759-776.
  • Verkleij J. A. C., Golan-Goldhirsh A., Antosiewicz D. M., Schwitzguébel J. P., Schröder P. 2009. Dualities in plant tolerance to pollutants and their uptake and translocation to the upper plant parts. Environ. Exp. Bot. 67, 10-22.
  • Vert G., Barberon M., Zelazny E., Séguéla M., Briat J.-F., Curie C., 2008. Arabidopsis IRT2 cooperates with the high-affinity iron uptake system to maintain iron homeostasis in root epidermal cells. Planta 229, 1171-1179.
  • Wang Y., Zong K., Jiang L., Sun J., Ren Y., Zehua S., Wen C., Chen X., Cao S., 2011. Characterization of an Arabidopsis cadmium-resistant mutant cdr3-1D reveals a link between heavy metal resistance as well as seed developmeny and flowering. Planta 233, 697-706.
  • Wojas S., Ruszczyńska A., Bulska A., Wojciechowski M., Antosiewicz D. M., 2007. Ca2+-dependent plant response to Pb2+ is regulated by LCT1. Environ. Poll. 147, 584-592.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv62p105kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.