Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 4 | 625-634

Article title

Roślinne czynniki szoku cieplnego

Content

Title variants

EN
Plant heat stress factors.

Languages of publication

PL EN

Abstracts

PL
Transkrypcyjne czynniki szoku cieplnego (Hsf) są niezbędne dla wszystkich organizmów eukariotycznych do przetrwania w warunkach silnego stresu. Są odpowiedzialne za transkrypcyjną regulację genów kodujących białka chaperonowe oraz inne białka powiązane ze stresem. W porównaniu do czterech Hsf kręgowców, roślinne Hsf są bardzo liczne i mogą mieć nawet 25 członków. Wykazują one wysoki stopień specjalizacji w stosunku do rodzaju stresu jak również różnych programów rozwojowych. Pomimo pewnych wysoce zachowywanych cech, różnice w strukturze roślinnych Hsf pozwoliły na wyróżnieni trzech podstawowych klas (klasa A, B i C). W przeciwieństwie do aktywatorowej klasy A, klasy C i B o porównywalnej liczbie członków nie posiadają oczywistej funkcji. U roślin transkrypcyjna regulacja genów zależnych od Hsf jest kontrolowana przez pośrednią lub bezpośrednią kooperację pomiędzy różnymi czynnikami Hsf, jak również w wyniku interakcji z białkami czperonowymi. Wciąż jednak sieć wzajemnych zależności pomiędzy poszczególnymi Hsf jest mało zrozumiała. Z całą pewność Hsf funkcjonują jako część składowa szlaków transdukcji sygnałów aktywowanych w stresie środowiskowym jak i w trakcie rozwoju.
EN
Heat shock factors (Hsf) are essential for all eukaryotic organisms to survive under exposures to acute stress. They are transcriptional regulators of genes encoding molecular chaperones and other stress proteins. Compared with other eukaryotes, e.g. vertebrates with 4 members of the Hsf family, the plant Hsf family shows a large multiplicity, with more than 20 members. The plant Hsf family shows a strong diversification of expression pattern not only in response to stress, but also during various developmental programs. Despite many conserved features plant Hsf are allocated based on structural characteristics into three major classes (class A, B and C). In contrast to class A, a considerable number of Hsf assigned to classes B and C heave no evident function as transcription activators. Transcriptional regulation of Hsf dependent genes in plants is controlled by direct and indirect cooperation between distinct Hsf members and by interaction with chaperones. However our understanding of the function of plant Hsf network is far from complete. Certainly, they can functions as part of different signal transduction pathways operating in response to environmental stress and during development.

Keywords

Journal

Year

Volume

61

Issue

4

Pages

625-634

Physical description

Dates

published
2012

Contributors

author
  • Zakład Genetyki Wydział Biologii i Ochrony Środowiska Uniwersytet Mikołaja Kopernika Lwowska 1, 87-100 Toruń, Polska
author
  • Zakład Genetyki Wydział Biologii i Ochrony Środowiska Uniwersytet Mikołaja Kopernika Lwowska 1, 87-100 Toruń, Polska

References

  • Baniwal S. K., Bharti K., Chan K. Y., Fauth M., Ganguli A., Kotak S., Mishra S. K., Nover L., Port M., Scharf K. D., Tripp J., Weber C., Zielinski D., von Koskull-Döring P., 2004. Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 4, 471-487.
  • Baniwal S. K., Chan K. Y., Scharf K.-D., Nover L., 2007. Role of heat stress transcription factor HsfA5 as specific repressor of HsfA4. J. Biol. Chem. 282, 3605-3613.
  • Banti V., Mafessoni F., Loreti E., Alpi A., Perata P., 2010. The heat-inducible transcription factor HsfA2 enhances anoxia tolerance in Arabidopsis thaliana. Plant Physiol. 152, 1471-1483.
  • Bharti K., von Koskull-Doring P., Bharti S., Kumar P., Tintschl-Korbitzer A., Treuter E., Nover L., 2004. Tomato heat stress transcription factor HsfB1 represents a novel type of general transcription coactivator with a histone-like motif interacting with the plant CREB binding protein ortholog HAC1. Plant Cell 16, 1521-1535.
  • Chan-Schaminet K. Y., Baniwal S. K., Bublak D., Nover L., Scharf K. D., 2009. Specific interaction between tomato HsfA1 and HsfA2 creates hetero-oligomeric superactivator complexes for synergistic activation of heat stress gene expression. J. Biol. Chem. 284, 20848-20857.
  • Cicero M. P., Hubl S. T., Harrison C. J., Littlefield O., Hardy J. A., Nelson H. C. M., 2001. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity. Nucleic Acids Res. 29, 1715-1723.
  • Czarnecka-Verner E., Pan S., Salem T., Gurley W. B., 2004 Plant class B HSFs inhibit transcription and exhibit affinity for TFIIB and TBP. Plant Mol. Biol. 56, 57-75.
  • Davletova S., Rizhsky L., Liang H., Shengqiang Z., Oliver D.J., Coutu J., Shulaev V., Schlauch K., Mittler R., 2005. Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of Arabidopsis. Plant Cell 17, 268-281.
  • Döring P.,Treuter E., Kistner C., Lyck R., Chen A., Nover L., 2000. The role of AHA motifs in the activator function of tomato heat stress transcription factors HsfA1 and HsfA2. Plant Cell 12, 265-278.
  • Fujimoto M., Nakai A., 2010. The heat shock factor family and adaptation to proteotoxic stress FEBS J. 277, 4112-4125.
  • Gadjev I., Vanderauwera S., Gechev T. S., Laloi C., Minkov I. N., Shulaey V., Apel K., Inze D., Mittler R., Van Breusegem F., 2006. Transcriptomic footprints disclose specificity of reactive oxygen species signaling in Arabidopsis. Plant Physiol. 141, 436-445.
  • Hahn A., Bublak D., Schleiff E., Scharf K. D., 2011. Crosstalk between Hsp90 and Hsp70 chaperones and heat stress transcription factors in tomato. Plant Cell 23, 741-755.
  • Heerklotz D., Döring P., Bonzelius F., Winkelhaus S., Nover L., 2001 The balance of nuclear import and export determines the intracellular distribution of tomato heat stress transcription factor HsfA2. Mol. Cell Biol. 21, 1759-1768.
  • Ikeda M., Ohme-Takagi M., 2009. A novel group of transcriptional repressors in Arabidopsis. Plant Cell Physiol. 50, 970-975.
  • Jedlicka P., Mortin M. A., Wu C., 1997. Multiple functions of Drosophila heat shock transcription factor in vivo. EMBO J. 16, 2452-2462.
  • Koskull-Döring P., Scharf K.-D., Nover L., 2007. The diversity of plant heat stress transcription factors. Trends Plant Sci. 12, 452-457.
  • Kotak S., Port M., Ganguli A., Bicker F., von Koskull-Döring P., 2004. Characterization of C-terminal domains of Arabidopsis heat stress transcription factors (Hsfs) and identification of a new signature combination of plant class A Hsfs with AHA and NES motifs essential for activator function and intracellular localization. Plant J. 39, 98-112.
  • Kotak S., Vierling E., Bäumlein H., von Koskull-Döring P., 2007. A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195.
  • Kumar M., Busch W., Birke H., Kemmerling B., Nurnberger T., Schöffl F., 2009. Heat shock factors HsfB1 and HsfB2b are involved in the regulation of Pdf1.2 expression and pathogen resistance in Arabidopsis. Mol. Plant 2, 152-165.
  • Li M., Doll J., Weckermann K., Oecking C., Berendzen K.-W., Schöffl F., 2010. Detection of in vivo interactions between Arabidopsis class A-HSFs, using a novel BiFC fragment, and identification of novel class B-HSF interacting proteins. Eur. J. Cell Biol. 89, 126-132.
  • Liu H. C., Liao H. T., Charng Y. Y., 2011. The role of class A1 heat shock factors ( HSFA1s ) in response to heat and other stresses in Arabidopsis. Plant Cell Environ. 34, 738-751.
  • Lohmann C., Eggers-Schumacher G., Wunderlich M., Schöffl F., 2004. Two different heat shock transcription factors regulate immediate early expression of stress genes in Arabidopsis. Mol. Genet. Genomics. 271, 11-21.
  • Miller G., Mittler R., 2006. Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. 98, 279-288.
  • Mishra S. K., Tripp J., Winkelhaus S., Tschiersch B., Theres K., Nover L., Scharf K. D., 2002. In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev. 16, 1555-1567.
  • Mittal D., Chakrabarti S., Sarkar A., Singh A., Grover A., 2009. Heat shock factor gene family in rice: genomic organization and transcript expression profiling in response to high temperature, low temperature and oxidative stresses. Plant Physiol. Biochem. 47, 785-795.
  • Morimoto R. I., 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev. 12, 3788-3796.
  • Nishizawa A., Yabuta Y., Yoshida E., Maruta T., Yoshimura K., Shigeoka S., 2006. Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535-547.
  • Nishizawa-Yokoi A., Yoshida E., Yabuta Y., Shigeoka S., 2009. Analysis of the regulation of target genes by an Arabidopsis heat shock transcription factor, HsfA2. Biosci. Biotechnol. Biochem. 73, 890-895.
  • Nishizawa-Yokoi A., Nosaka R., Hayashi H., Tainaka H., Maruta T., Tamoi M., Ikeda M., Ohme-Takagi M., Yoshimura K., Yabuta Y., Shigeoka S., 2011. HsfA1d and HsfA1e involved in the transcriptional regulation of HsfA2 function as key regulators for the Hsf signaling network in response to environmental stress. Plant Cell Physiol. 52, 933-945.
  • Nover L., Bharti K., Döring P., Mishra S. K., Ganguli A., Scharf K. D., 2001 Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperon. 6, 177-189.
  • Ogawa D., Yamaguchi K., Nishiuchi T., 2007. High-level overexpression of the Arabidopsis HsfA2 gene confers not only increased themotolerance but also salt/osmotic stress tolerance and enhanced callus growth. J. Exp. Bot. 58, 3373-3383.
  • Panchuk I. I., Volkov R. A., Schöffl F., 2002. Heat stress- and heat shock transcription factor -dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant Physiol. 129, 838-853.
  • Parker C. S., Topol J. A., 1984. Drosophila RNA polymerase II transcription factor binds to the regulatory site of an hsp70 gene. Cell 37, 273-283.
  • Pelham H. R., 1982. A regulatory upstream promoter element in the Drosophila hsp70 heat-shock gene. Cell 30, 517-528.
  • Peteranderl R., Rabenstein M., Shin Y. K., Liu C. W., Wemmer D. E., King D. S., Nelson H. C., 1999. Biochemical and biophysical characterization of the trimerization domain from the heat shock transcription factor. Biochemistry 38, 3559-3569.
  • Port M., Tripp J., Zielinski D., Weber C., Heerklotz D., Winkelhaus S., Bublak D., Scharf K. D., 2004. Role of Hsp17.4-CII as coregulator and cytoplasmic retention factor of tomato heat stress transcription factor HsfA2. Plant Physiol. 135,1457-1470.
  • Pratt W. B., Morishima Y., Osawa Y., 2008. The Hsp90 chaperone machinery regulates signaling by modulating ligand binding clefts. J. Biol. Chem. 283, 22885-22889.
  • Sakuma Y., Maruyama K., Qin F., Osakabe Y., Shinozaki K., Yamaguchi-Shinozaki K.,2006. Dual function of an Arabidopsis transcription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression. Proc. Natl. Acad. Sci. USA 103, 18822-18827.
  • Scharf K. D., Heider H., Hohfeld I., Lyck R., Schmidt E., Nover L., 1998. The tomato Hsf system: HsfA2 needs interaction with HsfA1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol. Cell. Biol. 18, 2240-2251.
  • Schramm F., Ganguli A., Kiehlmann E., Englich G.,Walch D., von Koskull-Döring P., 2006. The heat stress transcription factor HsfA2 serves as a regulatory amplifier of a subset of genes in the heat stress response in Arabidopsis. Plant Mol. Biol. 60, 759-772.
  • Schultheiss J., Kunert O., Gase U., Scharf K.-D., Nover L., Rüterjans H., 1996. Solution structure of the DNA-binding domain of the tomato heat stress transcription factor HSF24. Eur. J. Biochem. 236, 911-921.
  • Swindell W. R., Huebner M., Weber A. P., 2007. Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics 8, 125.
  • Travers S. A., Fares M. A., 2007. Functional coevolutionary networks of the Hsp70-Hop-Hsp90 system revealed through computational analyses. Mol. Biol. Evol. 24, 1032-1044.
  • Yoshida T., Sakuma Y., Todaka D., Maruyama K., Qin F., Mizoi J., Kidokoro S., Fujita Y., Shinozaki K., Yamaguchi-Shinozaki K., 2008. Functional analysis of an Arabidopsis heat-shock transcription factor HsfA3 in the transcriptional cascade downstream of the DREB2A stress-regulatory system. Biochem. Biophys. Res. Commun. 368, 515-521.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p625kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.