Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 4 | 613-623

Article title

Metabolizm węglowodanów jako jeden ze składników mechanizmów tolerancji na stresy abiotyczne u roślin

Content

Title variants

EN
Carbohydrate metabolism as a compound of tolerance mechanisms against abiotic stresses in plants.

Languages of publication

PL EN

Abstracts

PL
Zmiany w zawartości węglowodanów w tkankach roślinnych są często zaangażowane w odpowiedzi roślin na wiele stresów abiotycznych takich jak chłód, susza, zasolenie czy zalewanie. Stresy środowiskowe są głównymi przyczynami zmian w metabolizmie węglowodanów. Szlaki sygnalne wywołane przez cukry współdziałają ze szlakami odpowiedzi na stres i modyfikują metabolizm. W pracy opisano zmiany w zawartości cukrów i ich rolę podczas wzrostu i rozwoju roślin w warunkach stresów abiotycznych. Ponadto przedstawiono najnowsze dane na temat sposobu, w jaki rośliny odbierają i odpowiadają na czynniki środowiskowe poprzez mechanizmy odbioru sygnałów cukrowych. Dyskutowano także o złożoności ścieżek sygnalnych i znaczeniu poszczególnych cukrów rozpuszczalnych dla odporności roślin na stresy abiotyczne.
EN
Changes of carbohydrate concentration in plant tissues have been frequently shown to be involved in plant responses to many abiotic stresses like cold, drought, salinity and waterlogging. Environmental stresses lead to major alterations in carbohydrate metabolism. The sugar signaling pathways interact with stress pathways to modulate metabolism. This review describes the changes in sugar content and their role during plant growth and development under abiotic stresses. Moreover, recent evidences on the way how plants sense and respond to environmental factors through sugar-sensing mechanisms are presented. The complexity of signaling pathways and importance of several soluble sugars for resistance to abiotic stresses in plants are discussed.

Keywords

Journal

Year

Volume

61

Issue

4

Pages

613-623

Physical description

Dates

published
2012

Contributors

  • Katedra Biotechnologii Roślin, Wydział Biologii Uniwersytet Szczeciński Wąska 13, 71-415 Szczecin, Polska

References

  • Ahn C., Park U., Park P. B., 2011. Increased salt and drought tolerance by D-ononitol production in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 415, 669-674.
  • Al Hakimi A., Monneveux P., Galiba G., 1995. Soluble sugars, proline and relative water content (RWC) as traits for improving drought tolerance and divergent selection for RWC from T. polonicum into T. durum. J. Genet. Breed. 49, 237-244.
  • Bachmann M., Matile P., Keller F., 1994. Metabolism of the raffinose family oligosaccharides in leaves of Ajuga reptans L. Cold acclimation, translocation and sink to source transition: discovery of the chain elongation enzyme. Plant Physiol. 105, 1335-1345.
  • Baena-Gonzalez E., Rolland F., Thevelein J. M., Sheen J., 2007. A central integrator of transcription network in plant stress and energy signaling. Nature 448, 938-942.
  • Baena-Gonzalez E., Sheen J., 2008. Convergent energy and stress signaling. Trends Plant Sci. 13, 474-482.
  • Balibrea M. E., Dell'Amico J., Bolarin M. C., Perez-Alfocea F., 2000. Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiol. Plant. 110, 503-511.
  • Bowers M. C., 1994. Environmental effects of cold in plants. [W:] Plant-environment interactions. Wilkinson R.E. (red.). Marcel Dekker, New York, 391-411.
  • Castonguay Y., Nadeau P., Simard R. R., 1993. Effects of flooding on carbohydrate and ABA levels in roots and shoots of alfalfa. Plant Cell Environ. 16, 695-702.
  • Chatterton N. J., Harisson P. A., Thornley W. R., Bennett J. H., 1990. Sucrosyl-oligosaccharides and cool temperature growth in 14 forb species. Plant Physiol. Biochem. 28, 167-172.
  • Ciereszko I., 2006. Kontrola metabolizmu sacharozy u roślin w odpowiedzi na zmienne warunki środowiska. Kosmos 55, 229-241.
  • Ciereszko I., 2007. Odbiór i przekazywanie sygnału wywołanego zmianami poziomu cukrów w komórkach roślin. Post. Biol. Kom. 34, 695-713.
  • De Roover L., Vandenbranden K., Van Laere A., Van den Ende W., 2000. Drought induces fructan synthesis and 1-SST (sucrose:sucrose fructosyltransferase) in roots and leaves of Cichorium seedlings (Cichorium intybus L.). Planta 210, 808-814.
  • Fernandez O., Bethencourt L., Quero A., Sangwan R. S., Clement C., 2010. Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 15, 409-417.
  • Griffin J. J., Ranney T. G., Pharr D. M., 2004. Heat and drought influence photosynthesis, water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). J. Amer. Soc. Hort. Sci. 129, 497-502.
  • Gupta A. K., Kaur N., 2005. Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 30, 761-776.
  • Guy C. L., Huber J. L. A., Huber S. C., 1992. Sucrose phosphate synthase and sucrose accumulation at low temperature. Plant Physiol. 100, 502-508.
  • Hanson J., Smeekens S., 2009. Sugar perception and signaling - an update. Curr. Opin. Plant Biol. 12, 562-567.
  • Hincha D. K., Hellwege E. M., Heyer A. G., Crowe J. H., 2000. Plant fructans stabilize phosphatidylcholine liposomes during freeze-drying. Eur. J. Biochem. 267, 535-540.
  • Hincha D. K., Zuther E., Heyer A. G., 2003. The preservation of liposomes by raffinose family oligosaccharides during drying is mediated by effects on fusion and lipid phase transitions. Biochim. Biophys. Acta 1612, 172-177.
  • Ho S.-L., Chao Y.-C., Tong W.-F., Yu S.-M., 2001. Sugar coordinately and differentially regulates growth- and stres-regualted gene expression via a complex signal transduction network nad multiple control mechanisms. Plant Physiol. 125, 877-890.
  • Hoekstra F. A., Buitink J., 2001. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 8, 431-438.
  • Horchani F., R'bia O., Aschi-Smiti S., 2011. Oxygen sensing and plant acclimation to soil flooding. Int. J. Agric. Res. 6, 227-237.
  • Hossain M. A., Uddin S. N., 2011. Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 5, 1094-1101.
  • Imanishi H. T., Suzuki T., Maruda K., Harada T., 1998. Accumulation of raffinose and stachyose in shoot apices of Lonicera caerulea L. during cold acclimation. Sci. Hortic. 72, 255-263.
  • Iordachescu M., Imai R., 2008. Trehalose biosynthesis in response to abiotic stresses. J. Integr. Plant Biol. 50, 1223-1229.
  • Irfan M., Hayat S., Hayat Q., Afroz S., Ahmad A., 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241, 3-17.
  • Ismail A. M., Ella E. S., Vergara G. V., Mackill D. J., 2009. Mechanisms associated with tolerance to flooding during germination and early seedling growth in rice (Oryza sativa). Ann. Bot. 103, 197-209.
  • Jiang W., Fu F.-L., Zhang S.-Z., Wu L., Li W.-C., 2010. Cloning and characterization of functional trehalose-6-phosphate synthase gene in maize. J. Plant Biol. 53, 134-141.
  • Kang S.-Y., Lee K. J., Lee G.-J., Kim J.-B., Chung S.-J., Song J. Y., Lee B.-M., Kim D. S., 2010. Development of AFLP and STS markers linked to a waterlogging tolerance in Korean soybean landraces. Biol. Plant. 54, 61-68.
  • Kaur P., Ghai N., Sangha M. K., 2009. Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. Afr. J. Biotechnol. 8, 619-625.
  • Liao C.-T., Lin C.-H., 2001. Physiological adaptation of crop plants to flooding stress. Proc. Natl. Sci. Counc. 25, 148-157.
  • Livingston D. P. III, Hincha D. K., Heyer A. G., 2009. Fructan and its relationship to abiotic stress tolerance in plants. Cell. Mol. Life Sci. 66, 2007-2023.
  • Ma Y., Zhang Y., Lu J., Shao H., 2009. Roles of plant soluble sugars and their responses to plant cold stress. Afr. J. Biotechnol. 8, 2004-2010.
  • Manzur M. E., Grimddi A. A., Insausti P., Striker G. G., 2009. Escape from water or remain quiescent? Lotus tenuis changes its strategy depending on depth of submergence. Ann. Bot. 104, 1163-1169.
  • Martinez-Fleites C., Ortiz-Lombardia M., Pons T., Tarbouriech N., Taylor E. J., Arrieta J. G., Hernandez L., Davies G. J., 2005. Crystal structure of levan-sucrase from the Gram-negative bacterium Gluconacetobacter diazotrophicus. Biochem. J. 390, 19-27.
  • Mohammadkhani N., Heidari R., 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World App. Sci. J. 3, 448-453.
  • Morsy M. R., Jouve L., Hausman J.-F., Hoffmann L., McD Stewart J., 2007. Alteration of oxidative and carbohydrate metabolism under abiotic stress in two rice (Oryza sativa L.) genotypes contrasting in chilling tolerance. J. Plant Physiol. 164, 157-167.
  • Nemati I., Moradi F., Gholizadeh S., Esmaeili M. A., Bihamta M. R., 2011. The effect of salinity stress on ions and soluble sugars distribution in leaves, leaf sheets and roots of rice (Oryza sativa L.) seedlings. Plant Soil Environ. 57, 26-33.
  • Palonen P., Buszard D., Donnelly D., 2000. Changes in carbohydrates and freezing tolerance during cold acclimation of raspberry cultivars grown in vitro and in vivo. Physiol. Plant. 110, 393-401.
  • Panikulangara T. J., Eggers-Schumacher G., Wunderlich M., Stransky H., Schöffl F., 2004. Galactinol synthase 1. A novel heat shock factor target gene responsible for heat-induced synthesis of raffinose family oligosaccharides in Arabidopsis. Plant Physiol. 136, 3148-3158.
  • Partelli F. L., Vieira H. D., Rodrigues A. P. D., Pais J., Campostrini E., Chaves M. M. C.C., Ramalho J. C., 2010. Cold induced changes on sugar contents and respiratory enzyme activities in coffee genotypes. Ciência Rural 40, 781-786.
  • Parvaiz A., Satyawati S., 2008. Salt stress and phyto-biochemical responses of plants - a review. Plant Soil Environ. 54, 89-99.
  • Patra B., Ray S., Richter A., Majumder A. L., 2010. Enhanced salt tolerance of transgenic tobacco plants by co-expression of PcINO1 and McIMT1 is accompanied by increased level of myo-inositol and methylated inositol. Protoplasma 245, 143-152.
  • Pattanagul W., Madore M. A., 1999. Water deficit effects on raffinose family oligosaccharide metabolism in coleus. Plant Physiol. 121, 987-993.
  • Pattanagul W., Thitisaksakul M., 2008. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian J. Exp. Biol. 46, 736-742.
  • Paul M. J., Primavesi L. F., Jhurreea D., Zhang Y., 2008. Trehalose metabolism and signaling. Annu. Rev. Plant Biol. 59, 417-441.
  • Ponnu J., Wahl V., Schmid M., 2011. Trehalose-6-phosphate: connecting plant metabolism and development. Front. Plant Sci. 2, 70. doi: 10.3389/fpls.2011.00070.
  • Pourabdal L., Heidary R., Farboodnia T., 2008. Effects of three different flooding periods on some anatomical, morphological and biochemical changings in maize (Zea mays L.) seedlings. Asian J. Plant Sci. 7, 90-94.
  • Price J., Laxmi A., Martin S. K. S., Jang J. C., 2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16, 2128-2150.
  • Ramon M., Rolland F., Sheen J., 2008. Sugar sensing and signaling. The Arabidopsis Book, Number 6, http://www.bioone.org/doi/full/10.1199/tab.0117.
  • Rejšková A., Patková L., Stodůlková E., Lipavská H., 2007. The effect of abiotic stresses on carbohydrate status of olive shoots (Olea europaea L.) under in vitro conditions. J. Plant Physiol. 164, 174-184.
  • Rolland F., Baena-Gonzalez E., Sheen J., 2006. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675-709.
  • Rosa M., Prado C., Podazza G., Interdonato R., Gonzalez J. A., Hilal M., Prado F. E., 2009. Soluble sugars - metabolism, sensing and abiotic stress. A complex network in the life of plants. Plant Signal. Behav. 4(5), 388-393.
  • Sairam R. K., Kumutha D., Chinnusamy V., Meena R. C., 2009. Waterlogging-induced increase in sugar mobilization, fermentation, and related gene expression in the roots of mung been (Vigna radiata). J. Plant Physiol. 166, 602-616.
  • Sairam R. K., Kumutha D., Ezhilmathi K., Deshmukh P. S., Srivastava G. C., 2008. Physiology and biochemistry of waterlogging tolerance in plants. Biol. Plant. 52, 401-412.
  • Schluepmann H., Paul M., 2009. Trehalose metabolites in Arabidopsis - elusive, active and central. The Arabidopsis Book, Number 7, http://www.bioone.org/doi/full/10.1199/tab.0122.
  • Seki M., Narusaka M., Ishida J., Nanjo T., Fujita M., Oono Y., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Taji T., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., Shinozaki K., 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279-292.
  • Sengupta S., Patra B., Ray S., Majumder A. L., 2008. Inositol methyl transferase from a halophytic wild rice, Porteresia coarctata Roxb. (Tateoka): regulation of pinitol synthesis under abiotic stress. Plant Cell Environ. 31, 1442-1459.
  • Shao H. B., Chu L. Y., Lu Z. H., Kang C. M., 2008. Primary antioxidant free radical scavengeging and redox signalling pathways in higher plant cells. Int. J. Biol. Sci. 4, 8-14.
  • Shen B., Jensen R. G., Bohnert H. J., 1997. Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplasts. Plant Physiol. 113, 1177-1183.
  • Siringam K., Juntawong N., Cha-um S., Kirdmanee C., 2011. Salt stress induced ion accumulation, ion homeostasis, membrane injury and sugar contents in salt-sensitive rice (Oryza sativa L. spp. indica) roots under iso-osmotic conditions. Afr. J. Biotechnol. 10, 1340-1346.
  • Thomas H., 1997. Drought resistance in plants. [W:] Mechanisms of environmental stress resistance in plants. Basra A. S., Basra R. K. (red.). Harwood Academic Publ., Netherlands, 1-42.
  • Thomashow M. F., 1999. Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 571-599.
  • Tuteja N., Sopory S. K., 2008. Chemical signaling under abiotic stress environment in plants. Plant Signal. Behav. 3(8), 525-536.
  • Valluru R., Van den Ende W., 2008. Plant fructans in stress environments: emerging concepts and future prospects. J. Exp. Bot. 59, 2905-2916.
  • Van den Ende W., Valluru R., 2009. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9-18.
  • Vereyken I. J., Chupin V., Demel R. A., Smeekens S. C., de Kruijff B., 2001. Fructans insert between the headgroups of phospholipids. Biochim. Biophys. Acta. 1510, 307-320.
  • Vernon D. M., Bohnert H. J., 1992. A novel methyl transferase induced by osmotic stress in the facultative halophyte Mesembryanthemum crystallinum. EMBO J. 11, 2077-2085.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p613kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.