Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 4 | 573-586

Article title

Interakcje między mszycami a roślinami we wstępnych etapach wyboru żywiciela

Authors

Content

Title variants

EN
Interactions between aphids and plants during early steps of the host selection.

Languages of publication

PL EN

Abstracts

PL
Praca stanowi przegląd informacji na temat biochemicznych i morfologicznych interakcji między mszycami i roślinami podczas wczesnych etapów selekcji żywiciela. Na lądowanie migrujących morf mszyc na żywicielu wpływają najpierw bodźce wzrokowe i węchowe. Żółte i zielone barwniki stymulują zasiedlanie roślin, natomiast niebieskie i czerwone hamują. Ponadto, lotne związki organiczne (VOCs) mogą wpływać na mszyc na początku kolonizacji jako atraktanty lub repelenty. Z drugiej strony mszyce, uszkadzając liście lub inne tkanki roślinne, stymulują emisję VOCs, które zapoczątkowują obronę pośrednią, wabiąc biedronki, pasożytnicze błonkówki i inne parazytoidy lub drapieżców. Związki lotne emitowane w odpowiedzi na żerowanie mszyc mogą partycypować w komunikacji między różnymi roślinami oraz w interakcjach trójtroficznych rośliny-wirusy-mszyce. Po wylądowaniu na powierzchni rośliny mszyce narażone są na oddziaływanie barie mechanicznych, wytwarzanych przez włoski powierzchniowe i kutikulę. W tym etapie interakcji ważną rolę mogą odgrywać toksyny i aresanty wydzielane przez włoski wydzielnicze oraz niektóre związki zlokalizowane na powierzchni rośliny. Jednak struktura i skład chemiczny powierzchni rośliny może także zakłócać behawior naturalnych wrogów mszyc.
EN
Data on biochemical and morphological interactions between aphids and plants during early steps of the host selection were reviewed. Landing of migratory aphid morphs on the hosts is affected by visual and aromatic stimuli at the first step of the colonization. Plant settling is stimulated by yellow and green pigments and depressed by blue and red ones. Moreover, volatile organic compounds (VOCs) may influence the aphids as attractants or repellents at the beginning of colonization. On the other hand, aphid damage to leaves and other plant tissues stimulates release of VOCs that initiate indirect defence through attracting of ladybugs, parasitic wasps and other parasitoids, and predators. In addition, volatile compounds emitted as a result of aphid feeding may participate in plant-plant communication and plant-virus-aphid interactions. After landing aphids are subjected to mechanical barriers formed by trichomes and/or cuticle. Toxins and arrestants secreted by glandular trichomes as well as some compounds localized on plant surface may play important role during this step of the interactions. However, structural and chemical properties of plant surface may also disturb aphids predation by their natural enemies.

Keywords

Journal

Year

Volume

61

Issue

4

Pages

573-586

Physical description

Dates

published
2012

Contributors

  • Katedra Biochemii i Biologii Molekularnej Wydział Przyrodniczy Akademia Podlaska Prusa 12, 08-110 Siedlce, Polska

References

  • Archetti M., 2000. The origin of autumn colours by coevolution. J. Theor. Biol. 205, 625-630.
  • Archetti M., Döring T. F., Hagen S. B., Hughes N. M., Leather S. R., Lee D. W., Lev-Yadun S., Manetas Y., Ougham H. J., Schabergand P. G., Thomas H., 2009. Unravelling the evolution of autumn colours: an interdisciplinary approach. Trends Ecol. Evol. 24, 166-173.
  • Arimura G., Kost C., Boland W., 2005. Herbivore-induced, indirect plant defences. Bioch. Bioph. Acta 1734, 91-111.
  • Baldwin I. T., Kessler A., Halitschke R., 2002. Volatile signalling in plant-plant-herbivore interactions: what is real? Cur. Opin. Plant Biol. 5, 1-4.
  • Barthbott W., Neinhuis C., Cutler D., Ditsch F., Meusel I., Theisen I., Wilhelmi H., 1998. Classification and terminology of epicuticular waxes. Bot. J. Linnean Soc. 126, 237-260
  • Bernasconi M. L., Turlings T. C. J., Ambrosetti L., Bassetti P., Dorn S., 1998. Herbivore-induced emission of maize volatiles repel the corn leaf aphid Rhopalosiphum maidis. Ent. Exp. Appl. 87, 133-142.
  • Castillo L., Diaz M., González-Coloma A., González A., Alonso-Paz E., Bassagoda M. J. Rossini C., 2010. Clytostoma callistegioides (Bignoniaceae) wax extract with activity on aphid settling. Phytochemistry 71, 2052-2057.
  • Chamberlein K., Guerrieri E., Pennacchio F., Pettersson J., Pickett J.A., Poppy G. M., Powell W., Wadhams L. J., Woodcock C. M., 2001. Can aphid-induced plant signals be transmitted aerially and through the rhizosphere. Bioch. Syst. Ecol. 29, 1063-1074.
  • Ciepiela A., Sempruch C., Niraz S., 1990. The influence of steam distilled chemical compounds from winter wheat on the biology of the grain aphid, Sitobion avenae. Proc. Conf. Insect Chem. Ecol. Tabor 1990, 307-312.
  • Costa-Arbulu C., Gianoli E., Gonzáles W. L., Niemeyer H. M., 2001. Feeding by the aphid Sipha flava produces a reddish spot on leaves of Sorghum halepense: an induced defense? J. Chem. Ecol. 27, 273-283.
  • Degenhardt D. C., Refi-Hind S., Stratmann J. W., Lincoln D. E., 2010. Systemin and jasmonic acid regulate constitutive and herbivore-induced systemic volatile emission in tomato, Solanum lycopersicum. Phytochemistry 71, 2024-2037.
  • de Vos M., Jander G., 2010. Volatile communication in plant-aphid interactions. Cur. Opin. Plant Biol. 13, 366-371.
  • Döring T. F., Chittka L., 2007. Visual ecology of aphids - a critical review on the role of colours in host finding. Arth. Plant Interact. 1, 3-16.
  • Du Y., Poppy G. M., Powell W., Picket J. A., Wadhams L. J., Woodcock C. M., 1998. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi. J. Chem. Ecol. 24, 1355-1368.
  • Duetting P. S., Ding H., Neufeld J., Eigenbrode S. D., 2003. Plant waxy bloom on peas affects infection of pea aphids by Pandora neoaphidis. J. Invert. Path. 84, 149-158.
  • Eigenbrode S. D., 2004. The effect of plant epicuticular waxy blooms on attachment and effectiveness of predatory insects. Arthrop. Struct. Develop. 33, 91-102.
  • Eigenbrode S. D., Jetter R., 2002. Attachment of plant surface waxes by an insect predator. Integr. Comp. Biol. 42, 1091-1099.
  • Fernie A. R., 2007. The future of metabolic phytochemistry: larger number of metabolites, higher resolution, greater understanding. Phytochemistry 68, 2861-2880.
  • Girling R. D., Madison R., Hassall M., Poppy G. M., Turner J. G., 2008. Investigations into plant biochemical wound-response pathways involved in the production of aphid-induced plant volatiles. J. Exp. Bot. 59, 3077-3085.
  • Glinwood R. T., Peterson J., 2000. Change in response of Rhopalosiphum padi spring migrants to the repellent winter host component methyl salicylate. Ent. Exp. Appl. 94, 325-330.
  • Gonzáles W. L., Ramírez C. C., Olea N., Niemeyer H. M., 2002. Host plant changes produced by the aphid Sipha flava: consequences for aphid feeding behaviour and growth. Ent. Exp. Appl. 103, 107-113.
  • He J., Chen F., Chen S., Lv G., Deng Y., Fang W., Liu Z., Guan Z., He C., 2011. Chrysanthemum leaf epidermal surface morphology and antioxidant and defense enzyme activity in response to aphid infestation. J. Plant Physiol. 168, 687-693.
  • Karageorgou P., Buschmann C., Manetas Y., 2008. Red leaf colour as a warning signal against insect herbivory: honest or mimetic? Flora 203, 648-652.
  • Kellner M., Kolodinska Brantestam A., Åhman I., Ninkovic V., 2010. Plant-volatile induced aphid resistance in barley cultivars is related to cultivar age. Theor. Appl. Genet. 121, 1133-1139.
  • Kirchner S. M., Döring T. F., Saucke H., 2005. Evidence for trichromacy in the green peach aphid, Myzus persicae (Sulz.) (Hemiptera: Aphididae). J. Insect Physiol. 51, 1255-1260.
  • Krzyżanowski R., Leszczyński B., 2010. The impact of aphid Panaphis juglandis feeding on the emission of volatile compounds. Abstr. 6th World Congr. Allelopathy, 136.
  • Leszczyński B., 1987. Mechanizmy odporności pszenicy ozimej na mszycę zbożową. WSRP, Siedlce.
  • Lev-Yadun S., Gould K. S., 2007. What do red and yellow autumn leaves signal? Bot. Rev. 73, 279-289.
  • Maffei M. E., Mitchöfer A., Boland W., 2007. Insect feeding on plants: rapid signals and responses preceding the induction of phytochemical release. Phytochemistry 68, 2946-2959.
  • Musetti L., Neal J. J., 1997. Resistance to the pink potato aphid, Macrosiphum euphorbiae, in two accessions of Lycopersicon hirsrutum f. glabratum. Ent. Exp. Appl. 84, 137-146.
  • Ni X., Quisenberry S. S., Siegfried B. D., Lee K. W., 1998. Influence of cereal leaf epicuticular wax on Diuraphis noxia probing behavior and nymphoposition. Ent. Exp. Appl. 89, 111-118.
  • Ni X., Quisenberry S. S., Heng-Moss T., Markwell J., Higley L., Baxendale F., Sarath G., Klucas R., 2002. Dynamic change in photosynthetic pigments and chlorophyll degradation elicited by cereal aphid feeding. Ent. Exp. Appl. 105, 43-53.
  • Ninkowic V., Åhman I. M., 2009. Aphid acceptance of Hordeum genotypes is affected by plant volatile exposure and is correlated with aphid growth. Euphytia 169, 177-185.
  • Pfeiffer M., Tooker J. F., Luthe D. S., Felton G. W., 2009. Plants on early alert: glandular trichomes as sensors for insect herbivores. New Phytol. 184, 644-656.
  • Pickett J. A., Wadhams L. J., Woodcock C. M., Hardie J., 1992. The chemical ecology of aphids. Ann. Rev. Ent. 37, 67-90.
  • Pope T. W., Kissen R., Grant M., Pickett J. A., Rossiter J. T., Powell G., 2008. Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and aphithionitriles. J. Chem. Ecol. 34, 1302-1310.
  • Powell G., Maniar S. P., Pickett J. A., Hardie J., 1999. Aphid responses to non-host epicuticular lipids. Ent. Exp. Appl. 91, 115-123.
  • Powell W., Pennacchio F., Poppy G. M., Tremblay E., 1998. Strategies involved in the location of hosts by the parasitoid Aphidius ervi Haliday (Hymenoptera: Braconidae: Aphidiinae). Biol. Control 11, 104-112.
  • Prokopy R. J., 1972. Response of apple maggot flies to rectangles of different colors and shades. Environ. Ent. 1, 720-726.
  • Prokopy R. J., Owens E.D., 1983. Visual detection of plants by herbivorous insects. Ann. Rev. Ent. 28, 337-364.
  • Reina-Pinto J. J., Jephremov A., 2009. Surface lipids and plant defences. Plant Physiol. Bioch. 47, 540-549.
  • Schaefer H. M., Wilkinson D. M., 2004. Red leaves, insects and coevolution: a red herring? Trends Ecol. Evol. 19, 616-618.
  • Schilmiller A. L., Last R. L., Pichersky E., 2008. Harnessing plant trichome biochemistry for the production of useful compound. Plant J. 54, 702-711.
  • Shephard R. W., Wagner G. J., 2007. Phylloplane proteins: emerging defenses at the aerial frontline? Trends Plant Sci. 12, 51-56.
  • Shephard T., Robertson G. W., Griffiths D. W., Birch A. N. E., 1999. Epicuticular wax ester and triacylglycerol composition in relation to aphid infestation and resistance in red raspberry (Rubus idaeus L.). Phytochemistry 52, 1255-1267.
  • Simmons A. T., McGrath D., Gurr G. M., 2005. Trichome characteristics of F1 Lycopersicon esculentum × L. cheesmanii f. minor and L. esculentum × L. pennellii hybrids and effects on Myzus persicae. Euphytica 144, 313-320.
  • Szafranek B. M., Synak E. E., 2006. Cuticular waxes from potato (Solanum tuberosum) leaves. Phytochemistry 67, 80-90.
  • Unsicker S. B., Kunert G., Gershenzon J., 2009. Protective perfumes: the role of vegetative volatiles in plant defense against herbivores. Cur. Op. Plant Biol. 12, 479-485.
  • Vandermoten S., Mescher M. C., Francis F., Haubruge E., Verheggen F. J., 2012. Aphid alarm pheromone: An overview of current knowledge on biosynthesis and functions. Insect Bioch. Mol. Biol. 42, 155-163.
  • Verheggen F. J., Capella Q., Schwartzberg E. G., Voigt D., Haumbruge E., 2009. Tomato-aphid-hoverfly: a tritrophic interaction incompatibile for pest management. Artrop. Plant Inter. 3, 141-149.
  • Wang E., Hall J. T., Wagner G. J., 2004. Transgenic Nicotiana tabacum L. with enhanced trichome exudate cembratieneols has reduced aphid infestation in the field. Mol. Breed. 13, 49-57.
  • Wang E., Hall J. T., Wagner G. J., 2008. Transgenic Nicotiana Tabacum L. with enhanced trichome exudate cembratrieneols has reduced aphid infestation in the field. Mol. Breed. 13, 49-57.
  • Wójcicka A., 2003. Effect of tritcale surface compounds on growth and development of cereal aphids. Aphids Other Hemipter. Insects 13, 191-197.
  • Wójcicka A., 2011. Wpływ wosków powierzchniowych pszenżyta ozimego na elemnty biologii mszycy czeremchowo-zbożowej Rhopalosiphum padi. Post. Ochr. Rośl. 51, 1590-1594.
  • Wójcicka A., Leszczyński B., 2004. Effect of triticale waxes on host selection by aphids. Harba Pol., 50, 116-120.
  • Wójcicka A., Salak-Warzecha K., Leszczynski B., 2004. Surface waxes - possible triticale resistance factor to grain aphid. IOBC Bull. 27, 23-27.
  • Wójcicka A., Leszczyński B., Warzecha R., 2009. An influence of epicuticular waxes on feeding behaviour of grain aphid. Acta Bioch. Pol. 56 (Sup. 2), 33-34
  • Wójcicka A., Sempruch C., Łukasik I., Warzecha R., 2010a. Wpływ wosków powierzchniowych pszenżyta ozimego na zachowanie mszycy różano-trawowej Metopolophium dirhodum (Walker). Zesz. Prob. PNR 556, 503-509.
  • Wójcicka A., Sempruch C., Warzecha R., 2010b. Wpływ wosków powierzchniowych pszenżyta ozimego na wybór rośliny żywicielskiej przez mszyce zbożowe. Post. Ochr. Rośl. 50, 609-612.
  • Xue K., Deng S., Wang R. J., Yan F. M., Xu C. R., 2008. Leaf surface factors of transgenic Bt cotton associated with the feeding behaviors of cotton aphids: aA case study on non-target effects. Sci. China Ser. C-Life Sci. 51, 145-156.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p573kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.