Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 3 | 493-504

Article title

Charakterystyka fizjologiczno-biochemiczna bakterii fermentacji mlekowej

Content

Title variants

EN
Physiology and biochemistry of lactic acid bacteria.

Languages of publication

PL EN

Abstracts

PL
Bakterie fermentacji mlekowej (ang. Lactic Acid Bacteria - LAB) są grupą mikroorganizmów wyróżnioną ze względu na podobne właściwości metaboliczne. Procesem umożliwiającym im zdobycie energii jest fermentacja mlekowa, której głównym produktem jest zawsze kwas mlekowy. Ze względu na typ fermentacji wyróżnia się bakterie hetero- i homofermentatywne. Filogenetycznie LAB obejmują 3 rzędy - Lactobacillales, Bacillales i Bifidobacteriales. Ewolucyjne wyodrębnienie się tej grupy zaszło dzięki genetycznemu przystosowaniu do środowiska bogatego w substancje pokarmowe poprzez nabycie genów transporterów błonowych i utratę genów szlaków biosyntez. Jako auksotrofy, LAB katabolizują aminokwasy, w wyniku czego mogą powstawać niebezpieczne metabolity, takie jak karbaminian etylu i aminy biogenne. Ponieważ bakterie fermentacji mlekowej są powszechnie wykorzystywane biotechnologicznie, brak zdolności do wytwarzania takich związków musi być potwierdzony u szczepów przemysłowych.
EN
Lactic acid bacteria (LAB) are a group of microorganisms encompassing bacteria with similar metabolic capacities. The process which enables them to gain energy is lactic acid fermentation, where lactic acid is the major product. Taking into consideration the type of fermentation, LAB can be divided into two groups - hetero- and homofermentative. Phylogenetically, LAB are comprised of 3 orders: Lactobacillales, Bacillales and Bifidobacteriales. Their evolutionary separation was preceded by the genetic adjustment to the environment rich in nutrients through the gain of genes encoding membrane transporters and the loss of genes encoding biosynthetic pathways. As auxotrophic organisms, they catabolise amino acids - i.e. arginine, methionine and phenylalanine, which can be turned into harmful metabolites such as ethyl carbamate or biogenic amines. Since lactic acid bacteria are ubiquitously used in biotechnology, the inability to produce such compounds by industrial strains must be confirmed.

Keywords

Journal

Year

Volume

61

Issue

3

Pages

493-504

Physical description

Dates

published
2012

Contributors

  • Samodzielny Zakład Biologii Mikroorganizmów, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 166, 02-787 Warszawa, Polska
  • Samodzielny Zakład Biologii Mikroorganizmów, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 166, 02-787 Warszawa, Polska

References

  • Ammor S., Tauveron G., Dufour E., Chevallier I., 2006. Antibacterial activity of lactic acid bacteria against spoilage and pathogenic bacteria isolated from the same meat small-scale facility. Food Control 17, 454-461.
  • Becker P., 2005. Physiological Achilles' Heels of Enteropathogenic Bacteria in Livestock. Curr. Issues Intest. Microbiol. 6, 31-54.
  • Bernardeau M., Vernoux J., Henri-Dubernet S., Guéguen M., 2008. Safety assessment of dairy microorganisms: The Lactobacillus genus. International Journal of Food Microbiology. 126, 278-285.
  • Cerning J., 1995. Production of exopolysaccharides by lactic acid bacteria and dairy propionibacteria. Lait 75, 463-472.
  • de Giori G., de Valdez G., de Ruiz Holgado A., Oliver G., 1985. Effect of pH and temperature on the proteolytic activity of lactic acid bacteria. J. Diary Sci. 68, 2160-2164.
  • de Nadra M., 2007. Nitrogen metabolism in lactic acid bacteria from fruits: a review. Commun. Curr. Res. Educ. Topics Trends Applied Microbiol. 1, 500-510.
  • de Vuyst L., Degeest B., 1999. Heteropolysaccharides from lactic acid bacteria. FEMS Microbiol. Rev. 23, 153-177.
  • Diez-Gonzales F., 2007. Applications of Bacteriocins in Livestock. Curr. Issues Intest. Microbiol. 8, 15-24.
  • Helinck S., Le Bars D., Moreau D., Mireille Yvon., 2004. Ability of thermophilic lactic acid bacteria to produce aroma compounds from amino acids. Appl. Environ. Microbiol. 70, 3855-3861.
  • Hols P., Hancy F., Fontaine L., Grossiord B., Prozzi D., Leblond-Bourget N., Decaris B., Bolotin A., Delorme C., Ehrlich S., Guedon E., Monnet V., Renault P., Kleerebezem M., 2005. New insight in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol. Rev. 29, 435-465.
  • Hutkins R., Nannen N., 1993. pH homeostasis in lactic acid bacteria. J. Diary Sci. 76, 2354-2365.
  • Ishibashi N., Yaeshima T., Hayasawa H., 1997. Bifidobacteria: their significance in human intestinal health. Malaysian J. Nutrit. 3, 149-159.
  • Kathiresan K., Thiruneelakandan G., 2008. Prospects of lactic acid bacteria of marine origin. Indian J. Biotechnol. 7, 170-177.
  • Klaenhammer T., Altermann E., Arigoni F., Bolotin A., Breidt F., Broadbent J., Cano R., Chaillou S., Deutscher J., Gasson M., van de Guchte M., Guzzo J., Hartke A., Hawkins T., Hols P., Hutkins R., Kleerebezem M., Kok J., Kuipers O., Lubbers M., Maguin E., McKay L., Mills D., Nauta A., Overbeek R., Pel H., Pridmore D., Saier M., van Sinderen D., Sorokin A., Steele J., O'Sullivan D., de Vos W.,Weimer B., Zagorec M., Siezen R., 2002. Discovering lactic acid bacteria by genomics. Kluwer Acad. Publ. 82, 29-58.
  • Klaenhammer T., Peril A., Barrangou R., Duong T., Altermann T., 2005. Genomic perspectives on probiotic lactic acid bacteria. Biosci. Microflora 24, 31-33.
  • Klijn A., Mercenier A., Arigoni F., 2005. Lessons from the genome of bifidobacteria. FEMS Microbiol. Rev. 29, 491-509.
  • Korhonen J., 2010. Antibiotic Resistance of Lactic Acid Bacteria. Dissertations in Forestry and Natural Sciences. Publications of the University of Eastern Finland, Kuopio.
  • Kullen M., Klaenhammer T., 2000. Genetic modification of intestinal Lactobacilli and Bifidobacteria. Curr. Issues Incest. Microbiol. 2, 41-50.
  • Libudzisz Z., 2002. Probiotyki i prebiotyki w fermentowanych napojach mlecznych. Pediatria Współczesna. Gastroenterologia, Hepatologia i Żywienie Dziecka 4, 19-25.
  • Libudzisz Z., Kowal K., 2000. Mikrobiologia techniczna. Tom II. Wydawnictwo Politechniki Łódzkiej, Łódź.
  • Libudzisz Z., Kowal K., Żakowska Z., 2007. Mikrobiologia techniczna. Tom I. Wydawnictwo Naukowe PWN, Warszawa.
  • Liu M., Bayjanov J., Renckens B., Nauta A., Siezen R., 2010. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 11, 1-15.
  • Liu S., Pilone G., 1998. A review: Arginine metabolism in wine lactic acid bacteria and its practical significance. J. Appl. Microbiol. 84, 315-327.
  • Makarova K., Slesarev, Wolf Y., Sorokin A., Mirkin B., Koonin E., Pavlov A., Pavlova N., Karamychev V., Polouchine N., Shakhova V., Grigoriev I., Lou Y., Rohksar Y., Lucas S., Huang K., Goodstein D., Hawkins T., 2006. Comparative genomics of the lactic acid bacteria. Proc. Natl. Acad. Sci. USA 103, 15611-15616.
  • Mathur S., Singh R., 2005. Antibiotic resistance in food lactic acid bacteria - a review. Int. J. Food Microbiol. 105, 281-295.
  • Mayo B., van Sinderen D., Ventura M., 2008. Genome Analysis of Food Grade Lactic Acid-Producing Bacteria: From Basics to Applications. Curr. Genom. 9, 169-183.
  • Mills D., Rawsthorne H., Parker C., Tamir D., Makarova K., 2005. Genomic analysis of Oenococcus oeni PSU-1 and its relevance to winemaking. FEMS Microbiol. Rev. 29, 465-476.
  • Morelli L., 2000. In vitro selection of probiotic Lactobacilli: A critical appraisal. Curr. Issues Intest. Microbiol. 1, 59-67.
  • Nair P., Surendran P., 2005. Biochemical characterization of lactic acid bacteria isolated from fish and prawn. J. Culture Collect. 4, 48-52.
  • Nes I., Yoon S., Diep D., 2007. Ribosomally synthesiszed antimicrobial peptides (bacteriocins) in lactic acid bacteria: A Review. Food Sci. Biotechnol. 5, 675-690.
  • Neves A., Pool W., Kok J., Kuipers O., Santos H., 2005. Overview on sugar metabolism and its control in Lactococcus lactis - the input from in vivo NMR. FEMS Microbiol. Rev. 29, 531-544.
  • Palframan R., Glenn R. Gibson G., Rastall R., 2003. Carbohydrate preferences of bifidobacterium species isolated from the human gut. Curr. Issues Intest. Microbiol. 4, 71-75.
  • Pfeiler E., Klaenhammer T., 2007. The genomics of lactic acid bacteria. TRENDS Microbiol. 15, 546-553.
  • Probert H., Gibson R., 2002. Bacterial biofilms in the human gastrointestinal tract. Curr. Issues Intest. Microbiol. 3, 23-27.
  • Rich J., Bischoff K., Leathers T., Côté G., Liu S., 2010. Lactic acid bacteria-friend or foe? Lactic acid bacteria in the production of polysaccharides and fuel ethanol. KKU Res. J. 15, 424-435.
  • Ruas-Madiedo P., de los Reyes-Gavilan C., 2005. Invited Review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. Am. Dairy Sci. Assoc. 88, 843-856.
  • Salminen S., Nurmi J., Gueimonde M., 2005. The genomics of probiotic intestinal microorganisms. Genome Biol. 6, 225, 1-225.4.
  • Sanders M., Gibson G., Gill H., Guarner F., 2007. Probiotics: their potential to impact human health. CAST 36, 1-20.
  • Savadogo A., Ouattara C., Bassole I., Traore S., 2006. Bacteriocins and lactic acid bacteria - a minireview. Afr. J. Biotechnol. 5, 678-683.
  • Semjonovs P., Jasko J., Auzina L., Zikmanis P., 2008. The use of exopolysaccharide-producing culture of lactic acid bacteria to improve the functional value of fermented foods. J. Food Technol. 6, 101-109.
  • Schlegel H., 2005. Mikrobiologia ogólna. Wydawnictwo Naukowe PWN, Warszawa.
  • Shao-Chi W., Fu-Jin W., Chorng-Liang P., 2007. Growth and survival of lactic acid bacteria during the fermentation and storage of seaweed oligosaccharides solution. J. Marine Sci. Technol. 15, 104-114.
  • Suzuki K., Asano S., Iijima K., Kitamoto K., 2008. Sake and beer spoilage lactic acid bacteria - a review. J. Inst. Brewing Distil. 114, 209-223.
  • Suzuki K., Iijima K., Sakamoto K., Sami M., Yamashita H., 2006. A review of hop resistance in beer spoilage lactic acid bacteria. J. Instit. Brewing Distil. 112, 173-191.
  • Talwalkar A., Kailasapathy K., 2004. The role of oxygen in the viability of probiotic bacteria with reference to L. acidophilus and Bifidobacterium spp. Curr. Issues Intest. Microbiol. 5, 1-8.
  • Tannock G.,1999. Identification of Lactobacilli and Bifidobacteria. Curr. Issues Intest. Microbiol. 1, 53-64.
  • Vos P., Garrity G., Jones D., Krieg N., Ludwig W., 2009. Bergey's Manual of Systemactic Bacteriology. Vol. 3: The Firmicutes, Springer.
  • Wee Y., Kim J., Ryu H., 2006. Biotechnological production of lactic acid and its recent applications. Food Technology and Biotechnology. 44, 163-172.
  • Young-Jung W., Jin-Nam K., Hwa-Won R., 2006. Biotechnological production of lactic acid and its recent applications. Food Technol. Biotechnol. 44, 163-172.
  • Zacharof M., R.W. Lovitt R., Ratanapongleka K., 2010. The importance of Lactobacilli in contemporary food and pharmaceutical industry. Proc. Int. Conference on Chemical Engineering and Applications (CCEA 2010) Singapore, 26-28 February, 2010.
  • Zannini E., Santarelli S., Osimani A., Dell'Aquila L., Clementi F., 2005. Effect of process parameters on the production of lactic acid bacteria in batch fermentation. Ann. Microbiol. 55, 273-278.
  • Zhu Y., Zhang Y., Li Y., 2009. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl. Microbiol. Biotechnol. 83, 597-610.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p493kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.