PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 61 | 3 | 433-443
Article title

Układ krzepnięcia a reakcja zapalna.

Content
Title variants
EN
Bi-directional communication: coagulation versus inflammation.
Languages of publication
PL EN
Abstracts
PL
Zapalenie, proces zapoczątkowany przez uszkodzenie tkanek lub infekcję, jest powiązany z procesem krzepnięcia. Najważniejszym etapem zapalenia jest migracja zapalnych leukocytów, wymagająca udziału licznych proteaz, w tym metaloproteinazy macierzy zewnątrzkomórkowej 9 (MMP-9, żelatynazy 9) rozkładającej macierz zewnątrzkomórkową i błony podstawne. Z drugiej strony, proces krzepnięcia krwi, który może być zaktywowany przez szlak zewnątrz- lub wewnątrzpochodny, hamuje krwawienie i przywraca ciągłość naczyń krwionośnych, zjawiska które mogą towarzyszyć także reakcji zapalnej. Proces krzepnięcia jest kontrolowany przez układ plazminogenu za pośrednictwem jego składników (aktywatorów: t-PA, u-PA i inhibitorów: t-PAI, u-PAI) regulujących aktywność plazminy rozkładającej skrzep. Układ plazminogenu i MMP-9 współdziałają w licznych procesach fizjologicznych, zwłaszcza w rozkładzie macierzy zewnątrzkomórkowej. Dodatkowo, plazmina jest jednym z głównych aktywatorów pro-MMP-9, umożliwiając aktywację i wydzielanie MMP-9. Ponadto żelatynaza B uczestniczy w procesie angiogenezy umożliwiając migrację komórek śródbłonka naczyniowego. Z kolei MMP-9 rozkłada plazminogen umożliwiając powstanie angiostatyny, hamującej angiogenezę. Artykuł opisuje aktualne dane wskazujące na związek pomiędzy układem krzepnięcia i plazminogenu a reakcją zapalną (głównie na przykładzie MMP-9) i opisuje stopień skomplikowania tych powiązań.
EN
The process of inflammation that is initiated by tissue injury or infection is connected to the process of coagulation. The highlight of inflammation, a process of migration of inflammatory leukocytes is facilitated by numerous proteases, including matrix metalloproteinase 9 (MMP-9, gelatinase B) degrading extracellular matrix (ECM) and basement membrane components. On the other hand, the process of blood clotting which can be activated by either external or intrinsic pathways inhibits the bleeding process and restores the continuity of blood vessel walls. This sort of damage accompanies also inflammation. The process of blood clotting is directed by the plasminogen system as its components (activators: t-PA, u-PA and inhibitors: t-PAI, u-PAI) regulate activity of plasmin which degrades the clot. The plasminogen system and MMP-9 cooperate in numerous physiological processes, especially in regard to the degradation of ECM. In addition, plasmin is one of the main activators of pro-MMP-9 thus it affects the activity and release of MMP-9. Furthermore, gelatinase B takes part in angiogenesis by facilitating migration of vascular endothelial cells. On the other hand, MMP-9 has the ability to degrade plasminogen leading to generation of angiostatin that inhibits angiogenesis. The article discusses recent data linking the process of coagulation and the plasminogen system to the process of inflammation (mostly via MMP-9) and describes complexity of their interactions.
Keywords
Journal
Year
Volume
61
Issue
3
Pages
433-443
Physical description
Dates
published
2012
Contributors
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
  • Zakład Immunologii Ewolucyjnej, Instytut Zoologii, Uniwersytet Jagielloński, Gronostajowa 9, 30-387 Kraków, Polska
References
  • Belaaouaj A. A., Li A., Wun T. C., Welgus H. G., Shapiro S. D., 2000. Matrix metalloproteinases cleave tissue factor pathway inhibitor. Effects on coagulation. J. Biol. Chem. 275, 27123-27128.
  • Carpenter S. L., Mathew P., 2008. Alpha2-antiplasmin and its deficiency: fibrinolysis out of balance. Haemophilia 14, 1250-1254.
  • Castellazzi M., Tamborino C., Fainardi E., Manfrinato M. C., Granieri E., Dallocchio F., Bellini T., 2007. Effects of anticoagulants on the activity of gelatinases. Clin. Biochem. 40, 1272-1276.
  • Chang C. J., Hsu L. A., Ko Y. H., Chen P. L., Chuang Y. T., Lin C. Y., Liao C. H., Pang J. H., 2009. Thrombin regulates matrix metalloproteinase-9 expression in human monocytes. Biochem. Biophys. Res. Commun. 385, 241-246.
  • Chao J., Chao L., 2004. Kallikrein-kinin in stroke, cardiovascular and renal disease. Exp. Physiol. 90, 291-298.
  • Charo I. F., Ransohoff R. M., 2006. The many roles of chemokines and chemokine receptors in inflammation. N. Engl. J. Med. 354, 610-621.
  • Cheng T., Mathews K., Abrams-Ogg A., Wood D., 2011. The link between inflammation and coagulation: influence on the interpretation of diagnostic laboratory tests. Compend. Contin. Educ. Vet. 33, E1-E12.
  • Creemers E. E., Cleutjens J. P., Smits J. F., Daemen M. J., 2001. Matrix metalloproteinase inhibition after myocardial infarction: a new approach to prevent heart failure? Circ. Res. 89, 201-210.
  • Cuadrado E., Ortega L., Hernández-Guillamon M., Penalba A., Fernández-Cadenas I., Rosell A., Montaner J., 2008. Tissue plasminogen activator (t-PA) promotes neutrophil degranulation and MMP-9 release. J. Leukoc. Biol. 84, 207-214.
  • Danese S., Papa A., Saibeni S., Repici A., Malesci A., Vecchi M., 2007. Inflammation and coagulation in inflammatory bowel disease: The clot thickens. Am. J. Gastroenterol. 102, 174-186.
  • Davalos D., Akassoglou K. 2011. Fibrinogen as a key regulator of inflammation in disease. Semin. Immunopathol. (w druku).
  • Esmon C. T., 2004. Interactions between the innate immune and blood coagulation systems. Trends Immunol. 25, 536-542.
  • Esmon C. T., 2005. The interactions between inflammation and coagulation.Br. J. Haematol. 131, 417-430.
  • Fernandez-Botran R., 2000. Soluble cytokine receptors: novel immunotherapeutic agents. Expert Opin. Investig. Drugs. 9, 497-514.
  • Fernandez J. A., Griffin J. H., 1994. A Protein S Binding Site on C4b-binding Protein Involves β Chain Residues 31-45. J. Biol. Chem. 269, 2535-2540.
  • Gebbink M. F., Bouma B., Maas C., Bouma B. N., 2009. Physiological responses to protein aggregates: fibrinolysis, coagulation and inflammation (new roles for old factors). FEBS Lett. 583, 2691-2699.
  • Gołąb J., Jakobisiak M., Lasek W., 2002. Immunologia. Wydawnictwo Naukowe PWN, Warszawa.
  • Gong Y., Hart E., Shchurin A., Hoover-Plow J., 2008. Inflammatory macrophage migration requires MMP-9 activation by plasminogen in mice. J. Clin. Invest. 118, 3012-3024.
  • Kołaczkowska E., 2002. Shedding light on vascular permeability during peritonitis: role of mast cell histamine versus macrophage cysteinyl leukotrienes. Inflamm. Res. 51, 519-521.
  • Kołaczkowska E., 2007 Zapalenie (ostre) jako reakcja korzystna dla organizmu - historia badań a najnowsze osiągnięcia. Kosmos 274-275, 27-38.
  • Kołaczkowska E., Chadzinska M., Scislowska-Czarnecka A., Plytycz B., Opdenakker G., Arnold B., 2006. Gelatinase B/matrix metalloproteinase-9 contributes to cellular infiltration in a murine model of zymosan peritonitis. Immunobiology. 211, 137-148.
  • Kołaczkowska E., Lelito M., Kozakiewicz E., Van Rooijen N., Plytycz B., Arnold B., 2007. Resident peritoneal leukocytes are important sources of MMP-9 during zymosan peritonitis: superior contribution of macrophages over mast cells. Immunol. Lett. 113, 99-106.
  • Kołaczkowska E., Arnold B., Opdenakker G., 2008. Gelatinase B/MMP-9 as an inflammatory marker enzyme in mouse zymosan peritonitis: comparison of phase-specific and cell-specific production by mast cells, macrophages and neutrophils. Immunobiology. 213, 109-124.
  • Kołaczkowska E., Koziol A., Plytycz B., Arnold B., Opdenakker G., 2009. Altered apoptosis of inflammatory neutrophils in MMP-9-deficient mice is due to lower expression and activity of caspase-3. Immunol Lett. 126, 73-82.
  • Kopp C. W., Hölzenbein T., Steiner S., Marculescu R., Bergmeister H., Seidinger D., Mosberger I., Kaun C., Cejna M., Horvat R., Wojta J., Maurer G., Binder B. R., Breuss J. M., Ecker R. C., De Martin R., Minar E., 2004. Inhibition of restenosis by tissue factor pathway inhibitor: in vivo and in vitro evidence for suppressed monocyte chemoattraction and reduced gelatinolytic activity. Blood 103, 1653-1661.
  • Kruithof E. K., 2008. Regulation of plasminogen activator inhibitor type I gene expression by inflammatory mediators and statins. Thromb. Haemost. 100, 969-975.
  • Liu Z., Zhou X., Shapiro S. D., Shipley J. M., Twining S. S., Diaz L. A., Senior R. M., Werb Z., 2000. The serpin alpha1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell 102, 647-655.
  • Liu Z., Li N., Diaz L. A., Shipley M., Senior R. M., Werb Z., 2005. Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J. Clin. Invest. 115, 879-887.
  • Majno G., Joris I., 2004. Cells, tissues, and disease: Principles of general pathology. Blackwell, Oxford.
  • Mantovani A., 2010. Molecular pathways linking inflammation and cancer. Curr. Mol. Med. 10, 369-373.
  • Moreau M. E., Garbacki N., Molinaro G., Brown N. J., Marceau F., Adam A., 2005. The kallikrein-kinin system: current and future pharmacological targets. J. Pharmacol. Sci. 99, 6-38.
  • Nagase H., 1997. Activation mechanisms of matrix metalloproteinases. Biol. Chem. 378, 151-160.
  • Nagata M., 2005. Inflammatory cells and oxygen radicals. Curr. Drug Targets Inflamm. Allergy; 4, 503-504.
  • Opal S. M., Esmon C. T., 2003. Bench-to-bedside review: functional relationships between coagulation and the innate immune response and their respective roles in the pathogenesis of sepsis. Crit. Care. 7, 23-38.
  • Opdenakker G., Van Den Steen P. E., Van Damme J., 2001a. Gelatinase B: a tuner and amplifier of immune functions. Trends Immunol. 22, 571-579.
  • Opdenakker G., Van Den Steen P. E., Dubois B., Nelissen I., Van Coillie E., Masure S., Proost P., Van Damme J., 2001b. Gelatinase B functions as regulator and effector in leukocyte biology. J. Leukoc. Biol. 69, 851-859.
  • Parks W. C., Wilson C. L., López-Boado Y. S., 2004. Matrix metalloproteinases as modulators of inflammation and innate immunity. Nat. Rev. Immunol. 4, 617-629.
  • Pepper M. S., 2001. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis. Arterioscler. Thromb. Vasc. Biol. 21, 1104-1117.
  • Poitevin S., Garnotel R., Antonicelli F., Gillery P., Nguyen P., 2008. Type I collagen induces tissue factor expression and matrix metalloproteinase 9 production in human primary monocytes through a redox-sensitive pathway. J. Thromb. Haemost. 6, 1586-1594.
  • Saito T., Gale M., 2007. Principles of intracellular viral recognition. Curr. Opin. Immunol. 19, 17-23.
  • Savill J., 1997. Apoptosis in resolution of inflammation. J. Leukoc. Biol. 61, 375-380.
  • Scott A., Khan K. M., Cook J. L., Duronio V., 2004. What is 'inflammation'? Are we ready to move beyond Celsus? Br. J. Sports Med. 38, 248-249.
  • Stack M. S., Gately S., Bafetti L. M., Enghild J. J., Soff G. A., 1999. Angiostatin inhibits endothelial and melanoma cellular invasion by blocking matrix-enhanced plasminogen activation. Biochem. J. 340, 77-84.
  • Stoppelli M. P., Vincenza C. M., Franco P., Vocca I., Alfano D., Longanesi-Cattani I., Bifulco K., Mancini A., Caputi M., 2009. Structure, function and antagonists of urokinase-type plasminogen activator. Front. Biosci. 14, 3782-3794.
  • Tedder T. F., Steeber D. A., Chen A., Engel P., 1995. The selectins: vascular adhesion molecules. FASEB J. 9, 866-873.
  • Tkachuk V. A., Plekhanova O. S., Parfzonova Z. V., 2009. Regulation of arterial remodeling and angiogenesis by urokinase-type plasminogen activator. Can. J. Physiol. Pharmacol. 87, 231-251.
  • Traczyk W. Z., 1989. Fizjologia człowieka w zarysie. Wydawnictwo Lekarskie PZWL, Warszawa.
  • Ugwu F., Lemmens G., Collen D., Lijnen H. R., 2001. Matrix metalloproteinase deficiencies do not impair cell-associated fibrinolytic activity. Thromb. Res. 102, 61-69.
  • Van Der Poll T., De Boer J. D., Levi M., 2011. The effect of inflammation on coagulation and vice versa. Curr. Opin. Infect. Dis. 24, 273-278.
  • Verhamme P., Hoylaerts M. F., 2009. Hemostasis and inflammation: two of a kind? Thromb. J. 7, 15.
  • Visse R., Nagase H., 2003. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ. Res. 92, 827-839.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv61p433kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.