Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 2 | 363-370

Article title

Nowe fakty dotyczące transportu pęcherzykowego w komórkach roślinnych

Content

Title variants

EN
New facts concerning the vesicular transport in plant cells

Languages of publication

PL EN

Abstracts

PL
Komórki eukariotycznecharakteryzują sięmiędzy innymi systemem błon wewnętrznych. Pomiędzy organellami systemu wykształciła się pewnego rodzaju komunikacja, głównie za pomocą transportu pęcherzykowego, zapewniająca sprawne funkcjonowanie komórek a także całego organizmu. Organelle wchodzące w skład systemu błon wewnętrznych biorą udział w licznych procesach, przede wszystkim w transporcie różnych substancji, m.in. białek, szlakiem sekrecyjnym i endocytotycznym. Błony i białka są przenoszone między organellami, za pomocą struktur zwanych pęcherzykami transportującymi, a proces ten jest znany jako transport pęcherzykowy. Ze względu na kompleksowość zagadnienia, artykuł skupia się tylko na szlaku wydzielniczym. Obejmuje on wczesny szlak sekrecyjny, który biegnie od retikulum endoplazmatycznego (ER) do strefy cis diktiosomu (D), transport przez diktiosom i późny szlak sekecyjny obejmujący eksport białek z diktiosomu. Bardziej szczegółowo są przedstawione najnowsze osiągnięcia dotyczące transportu od ER do strefy cis diktiosomu, a także transportu wstecznego z udziałem retromeru.
EN
Eukaryotic cells are characterized, among other traits, by a system of internal membranes. Between the organelles of the system there developed a kind of communication, ensuring the smooth functioning of the cells and of the whole organism. The organelles "communicate" among themselves, mainly due to vesicular transport They are involved in numerous processes, mainly in the secretory pathway and endocytosis. Membranes and proteins are moved between organelles of the system through small structures called transporting vesicles and this process is known as vesicular transport. Due to the comprehensiveness of the issue, the article focuses only on the secretory pathway. This pathway embraces the early secretory pathway, which runs from the endoplasmic reticulum (ER) to the cis- zone of the diktiosom (D), transport by D and the late secretory pathway, including the export of proteins from D. In a greater detail are presented the latest developments on the issues related primarily to the transport from the ER to the cis-zone, and retrograde transport involving the retromer.

Keywords

Journal

Year

Volume

61

Issue

2

Pages

363-370

Physical description

Dates

published
2012

Contributors

  • Collegium Biologicum, Umultowska 89, 61-614 Poznań, Polska
  • Collegium Biologicum, Umultowska 89, 61-614 Poznań, Polska
author
  • Collegium Biologicum, Umultowska 89, 61-614 Poznań, Polska

References

  • Aridor M., Fish K. N., Bannykh S., Weissman J., Roberts T. H., Lippincott-Schwartz J., Balch W. E., 2001. The Sar1 GTPase coordinates biosynthetic cargo selection with endoplasmic reticulum export site assembly. J. Cell Biol. 152, 213-229.
  • Bodył A., Mackiewicz P., Stiller J. W., 2009. Early steps in plastid evolution: current ideas and controversies. BioEssays 31, 1219-1232
  • Bonifacino J. S., Hurley J. H., 2008. Retromer. Curr. Opin. Cell. Biol. 20, 427-436.
  • Collins B. M., Norwood S. J., Kerr M. C., Mahony D., Seaman M. N., Teasdale R. D., Owen D. J., 2008. Structure of Vps26B and mapping of its interaction with the retromer protein complex. Traffic 9, 366-379.
  • Dettmer J., Hong-Demerstdorf A., Stierhof Y. D, Schumacher K., 2006. Vacuolar H+ATPase activity is reguired for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18, 715-730.
  • Gilchrist A., Au C. E., Hiding J., Bell A. W., Fernandez-Rodriguez J., Lesimple S., Nagaya H., Roy L., Gosline S. J., Hallett M., 2006. Quantitative proteomics analysis of the secretory pathway. Cell 127, 1265-1281.
  • Hawes C., Osterrieder A., Hummel E., Sparkes I., 2008. The Plant ER-Golgi Interface. Traffic 9, 1571-1580.
  • Hicks G. R., Raikhel N. V., 2010. Advances in dissecting endomembrane trafficking with small molecules. Curr. Opin. Plant Biol. 13, 1-8.
  • Inaba T., Schnell D. J., 2008. Protein trafficking to plastids: one theme, many variations. Biochem J. 413, 15-28
  • Johannes L., Wunder Ch., 2011. Retrograde transport - two (or more) roads diverged in an endosomal tree? doi: 10.1111/j.1600-0854.2011.01200.x.
  • Kang B.-Ho., Staehelin L. A., 2008. Er- to - Golgi transport by COP II vesciles in Arabidopsis thaliana a ribosome-exluding scaffold that is transferred with the vesciles to the Golgi matrix. Protoplazma 234, 51-64.
  • Kang B.-Ho., Nielsen E., Pressus M. L., Mastronarde D., Staehelin L. A., 2011. Electron tomography of RabA4b- and PI-4Kβ1-labeled trans Golgi Network compartments in Arabidopsis. Traffic 12, 313-329.
  • Kawakatsu T., Takaiwa F., 2010. Cereal seed storage protein synthesis: fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol. J. 8, 939-953
  • Li H., Chiu Ch.-Ch., 2010. Protein transport into chloroplasts Annu. Rev. Plant Biol. 61, 157-80
  • Marti L., Fornaciari S., Renna L., Stefano G., Brandizzi F., 2010. COP II-mediated traffick in plants. Trends Plant Sci. 15, 522-528.
  • Matthew J. P, Frigerio L., 2007. Coated vesicles in plant cells. Seminars Cell Develop. Biol. 18, 471-478
  • McGough I. J., Cullen P. J., 2011. Recent advances in retromer biology. doi: 10.1111/j.1600-0854.2011.01201.x
  • Moreau P., Brandizzi F., Hanton S., Chatre L., Melser S., Hawes Ch., Satiat-Jeunemaitre B., 2007., The plant ER-Golgi interface: a highly structured and dynamic membrane complex. J. Exp. Botan. 58, 49-64.
  • Nakano A., Luini A., 2010. Passage through the Golgi. Curr. Opin. Cell Biol. 22, 471-478.
  • Niemes S., Langhans M., Viotti C., Scheuring D., San Wan Yan M., Jiang L., Hillmer S., Robinson D. G., Pimpl P., 2010a. Retromer recycles vacuolar sorting receptors from the trans Golgi Network. Plant J. 61, 107-121.
  • Niemes S., Labs M., Scheuring D., Kruger L., Langhans M., Jesenofsky B., Robinson D. G., Pimpl P., 2010b. Sorting of plant vacuolar proteins is initiated in the ER. Plant J. 62, 601-614.
  • Oliviusson P., Heinzerling O., Hillmer S., Hinz G., Tse Y. C., Jiang L., Robinson D. G., 2006. Plant retromer: identification, localization to the prevacuolar compartment and microvesicles, and preliminary evidence for an interaction with vacuolar sorting receptors. Plant Cell 18, 1239-1252.
  • Park J. H., Oufattole M., Rogers J. C., 2007. Golgi-mediated vacuolar sorting in plant cells: RMR proteins are sorting receptors for the protein aggregation/membrane internalization pathway. Plant Sci. 172, 728-745.
  • Patron N. J., Waller R. F., 2007. Transit peptide diversity and divergence: a global analysis of plastid targeting signals. BioEssays 29, 1048-1058.
  • Pogson B. J., Albrecht V., 2011. Genetic dissection of chloroplast biogenesis and development: an overview. Plant Physiol. 155, 1545-1551.
  • Richter S., Voß U., Jürgens G., 2009. Post - Golgi traffic in plant. Planta 223, 223-236.
  • Robinson D. G., Jiang L., Schumacher K., 2008. The endosomal system of plants: charting new and familiar territories. Plant Physiol. 147, 1482-1492.
  • Sato K, Nakano A., 2007. Mechanisms of COPII vesicle formation and protein sorting. FEBS Lett. 581, 2076-2082.
  • Schellmann S., Pimpl P., 2009. Coats of endsomal protein sorting: retromer and ESCRT. Curr. Opin. Plant Biol. 12, 670-676.
  • Schleiff E., Becker Th., 2011. Common ground for protein translocation: access control for mitochondria and chloroplasts. Nature Rev. Mol. Cell Biol. 12, 48-59.
  • Schwenkert S., Soll J., Bölter B., 2011. Protein import into chloroplasts - How chaperones feature into the game. Biochim. Biophys. Acta 1808, 901-911.
  • Simon 2008. Golgi governance: The third way. Cell 13, 951-953.
  • Toyooka K., Goto Y., Asatsuma S., Koizumi M., Mitsui T., Matsuokaa K., 2009. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. Plant Cell 21, 1212-1229.
  • Wojtaszek P., Woźny A., Ratajczak L., 2006. Biologia komórki roślinnej. Struktura., tom 1., Wydawnictwo Naukowe PWN, Warszawa.
  • Wojtaszek P., Woźny A., Ratajczak L., 2007. Biologia komórki roślinnej. Funkcja. Tom 2. Wydawnictwo Naukowe PWN, Warszawa.
  • Zheng H., Staehelin L. A., 2011. Protein storage vacuoles are transformed into lytic vacuoles in root meristematic cells of germinating seedlings by multiple, cell type-specific mechanisms. Plant Physiol. 155, 2023-2035.
  • Žárský V., Cvrčková F., Potocký M., Hála M., 2009. Exocytosis and cell polarity in plants - exocyst and recycling domains. New Phytologist 183, 255-272.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p363kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.