PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 61 | 2 | 305-318
Article title

Molekularny mechanizm zegara okołodobowego, czyli jak organizmy mierzą czas

Content
Title variants
EN
Molecular mechanism of the circadian clock - how organisms count time
Languages of publication
PL EN
Abstracts
PL
Rytmy okołodobowe są powszechne w przyrodzie, a ich występowanie stwierdzono niemal u wszystkich organizmów. Wspomniane rytmy przejawiają się zarówno w zachowaniu jak również metabolizmie oraz wielu ścieżkach fizjologicznych organizmu. Rytmy okołodobowe są kontrolowane przez specjalny mechanizm molekularnego zegara, opartego na działaniu pętli sprzężeń zwrotnych regulowanych poprzez białka o charakterze czynników transkrypcyjnych. Przez ostatnie lata mechanizm ten był intensywnie badany u bakterii, grzybów i roślin, oraz przede wszystkim u zwierząt bezkręgowych (Drosophila melanogaster) i ssaków. Molekularny mechanizm endogennego oscylatora różni się u Eukariota i Prokaryota, co sugeruje jego niezależne powstanie u tych grup organizmów. Pomimo znaczących różnic w regulacji mechanizmu zegara okołodobowego, wspólną cechą jest fakt, iż czynniki o charakterze aktywatorów inicjują transkrypcję czynników o charakterze inhibitorów, które zwrotnie hamują ekspresję wspomnianych aktywatorów. Kolejny cykl rozpoczyna się w momencie, gdy poziom czynników hamujących jest na tyle niski, iż możliwa jest ponowna transkrypcja czynników aktywujących. Taki samonapędzający się oscylator jest synchronizowany do zewnętrznych warunków środowiska dzięki istnieniu dróg wejściowych, które mogą odbierać informacje o warunkach świetlnych, temperaturze itp. Ponadto, białka wchodzące w skład molekularnego oscylatora odpowiedzialne są nie tylko za regulację poziomu białek zegara, ale wpływają na ekspresję innych genów, tak zwanych genów kontrolowanych przez zegar. Produkty białkowe tych genów stanowią element dróg wyjściowych zegara, które kontrolują wiele procesów fizjologicznych jak i behawior. W prezentowanej pracy został omówiony molekularny mechanizm zegara okołodobowego zwierząt modelowych, takich jak Synechococcus elongatus, Neurospora crassa, Arabidopsis thaliana, Drosophila melanogaster oraz Mus musculus.
EN
Almost all organisms exhibit circadian rhythms in behavior, metabolism and physiology. All these rhythms are controlled by a clock mechanism, which is composed of transcriptional feedback loops. Molecular composition and regulation of endogenous oscillators responsible for circadian rhythms, from cyanobacteria to humans, have been extensively investigated over past years. The molecular mechanism of the circadian clock is different between eukaryotes and prokaryotes, suggesting its independent origin. However, a common feature of the clock is that positive factors in the feedback loops activate the transcription of negative factors, which feedback to inhibit expression of positive factors. When the level of negative factors is low, the positive factors can start the next cycle of transcription. The core clock is synchronized to the environment by means of input pathways which can detect external cues such as light, temperature and other. Clock proteins are not only self-regulated molecules but can also influence expression of other genes (clock-controlled genes). These genes are part of an output pathway which controls many behavioral and physiological pathways. In this paper, the circadian clock mechanisms in different model organism (Synechococcus elongatus, Neurospora crassa, Arabidopsis thaliana, fruit fly and mouse) are reviewed.
Keywords
Journal
Year
Volume
61
Issue
2
Pages
305-318
Physical description
Dates
published
2012
References
  • Akashi M., Takumi T., 2005. The orphan nuclear receptor RORalpha regulates circadian transcription of the mammalian core-clock Bmal1. Nat. Struct. Mol. Biol. 12, 441-448.
  • Alabadí D., Oyama T., Yanovsky M. J., Harmon F. G., Más P., Kay S., 2001. Reciprocal regulation between TOC1 and LHY/CCA1 within the Arabidopsis circadian clock. Science 293, 880-883.
  • Allada R., Chung B.Y., 2010. Circadian organization of behavior and physiology in Drosophila. Ann. Rev. Physiol. 72, 605-624.
  • Aronson B. D., Johnson K., Loros J. J., Dunlap J. C., 1994. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 263, 1578-1584.
  • Bae K., Lee C., Hardin P. E., Edery I., 2000. dCLOCK is present in limiting amounts and likely mediates daily interactions between the dCLOCK-CYC transcription factor and the PER-TIM complex. J. Neurosci. 20, 1746-1753.
  • Baker C. L., Kettenbach A. N., Loros J. J., Gerber S., Dunlap J. C., 2009. Quantitative proteomics reveals a dynamic interactome and phase-specific phosphorylation in the Neurospora circadian clock. Mol. Cell 34, 354-363.
  • Blau J., Young M. W., 1999. Cycling vrille expression is required for a functional Drosophila clock. Cell 99, 661-671.
  • Cha J., Chang S., Huang G., Cheng P., Liu Y., 2008. Control of WHITE COLLAR localization by phosphorylation is a critical step in the circadian negative feedback process. EMBO J. 27, 3246-55.
  • Chen C.-H., Dunlap J. C., Loros J. J., 2010. Neurospora illuminates fungal photoreception. Fungal Genet. Biol. 47, 922-929.
  • Cheng P., He Q., He Q., Wang L., Liu Y., 2005. Regulation of the Neurospora circadian clock by an RNA helicase. Genes Develop. 19, 234-241.
  • Cymborowski B., 2000. Zegar biologiczny końca milenium: od zegara kwiatowego do zegara molekularnego. Kosmos 49, 439-446.
  • Cyran S. A., Buchsbaum A. M., Reddy K. L., Lin M. C., Glossop N. R. J., Hardin P. E., Young M. W., Storti R. V., Blau J., 2003. vrille, Pdp1, and dClock form a second feedback loop in the Drosophila circadian clock. Cell 112, 329-341.
  • Daan S., 2010. A history of chronobiological concepts.[W:] Protein reviews. Circadian Clock First Edit. Albrecht U. (red.). Springer New York, 1-35.
  • Diernfellner A. C. R., Querfurth C., Salazar C., Höfer T., Brunner M., 2009. Phosphorylation modulates rapid nucleocytoplasmic shuttling and cytoplasmic accumulation of Neurospora clock protein FRQ on a circadian time scale. Genes Develop. 23, 2192-2200.
  • Dubruille R., Murad A., Rosbash M., Emery P., 2009. A constant light-genetic screen identifies KISMET as a regulator of circadian photoresponses. PLoS Genet. 5, p.e1000787.
  • Dunlap J., 1999. Molecular bases for circadian clocks. Cell 96, 271-290.
  • Dunlap J. C., Loros J. J., 2006. How fungi keep time: circadian system in Neurospora and other fungi. Curr. Opin. Microbiol. 9, 579-587.
  • Farré E. M., Harmer S. L., Harmon F. G., Yanovsky M. J., Kay S. A., 2005. Overlapping and distinct roles of PRR7 and PRR9 in the Arabidopsis circadian clock. Curr. Biol. 15, 47-54.
  • Feldman J. F., Hoyle M. N., 1973. Isolation of circadian clock mutants of Neurospora crassa. Genetics 75, 605-613.
  • Franchi L., Fulci V., Macino G., 2005. Protein kinase C modulates light responses in Neurospora by regulating the blue light photoreceptor WC-1. Mol. Microbiol. 56, 334-345.
  • Froehlich A. C., Loros J. J., Dunlap J. C., 2003. Rhythmic binding of a WHITE COLLAR-containing complex to the frequency promoter is inhibited by FREQUENCY. Proc. Natl. Acad. Sci. USA 100, 5914-5919.
  • Golden S. S., Ishiura M., Johnson C. H., 1997. Cyanobacterial Circadian Rhythms. Ann. Rev. Plant Physiol. Plant Mol. Biol. 48, 327-354.
  • Golden S. S., Cassone V. M., Li W. A., 2007. Shifting nanoscopic clock gears. Nat. Struct. Mol. Biol. 14, 362-363.
  • Green R., Tingay S., Wang Z., 2002. Circadian rhythms confer a higher level of fitness to Arabidopsis plants. Plant Physiol. 129, 576-584.
  • Guo J., Cheng P., Yuan H., Liu Y., 2009. The exosome regulates circadian gene expression in a posttranscriptional negative feedback loop. Cell 138, 1236-1246.
  • Hao H., Alle D. L., Hardin P. E., 1997. A circadian enhancer mediates PER-dependent mRNA cycling in Drosophila melanogaster. Mol. Cell. Biol. 17, 3687-3693.
  • Harms E., Young M. W. I., Saez L., 2003. CK1 and GSK3 in the Drosophila and mammalian circadian clock. Novartis Found. Symp. 253, 267-277; discussion 102-109, 277-284.
  • He Q., Cheng P., Yang Y., He Q., Yu H., Liu Y., 2003. FWD1-mediated degradation of FREQUENCY in Neurospora establishes a conserved mechanism for circadian clock regulation. EMBO J. 22, 4421-4430.
  • He Q., Cha J., He Q., Lee H.-C., Yang Y., Liu Y., 2006. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Develop. 20, 2552-2565.
  • Huang G., Chen S., Li S., Cha J., Long C., Li L., He Q., Liu Y., 2007. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes Develop. 21, 3283-3295.
  • Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H., Kondo T., 1998. Expression of a gene cluster kaiabc as a circadian feedback process in Cyanobacteria. Science, 281, 1519-1523.
  • Ivleva N. B., Bramlett M. R., Lindahl P., Golden S. S., 2005. LdpA: a component of the circadian clock senses redox state of the cell. EMBO J. 24, 1202-1210.
  • Ivleva N. B., Gao T., Li Wang A. C., Golden S. S., 2006. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock. Proc. Natl. Acad. Sci. USA 103, 17468-17473.
  • Kim E.Y., Edery I., 2006. Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc. Natl. Acad. Sci. USA 103, 6178-6183.
  • Kondo T., Tsinoremas N. F., Golden S. S., Johnson C. H., Kutsuna S., Ishiura M., 1994. Circadian clock mutants of cyanobacteria. Science 266, 1233-1236.
  • Konopka R.J., Benzer S., 1971. Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112-2116.
  • Kurosawa S., Murakami R., Onai K., Morishita M., Hasegawa D., Iwase R., Uzumaki T., Hayashi F., Kitajima-Ihara T., Sakata S., Murakami M., Kouyama T., Ishiura M., 2009. Functionally important structural elements of the cyanobacterial clock-related protein Pex. Genes Cells 14, 1-16.
  • Li S., Lakin-Thomas P., 2010. Effects of prd circadian clock mutations on FRQ-less rhythms in Neurospora. J. Biol. Rhythms 25, 71-80.
  • Locke J. C. W., Southern M. M., Kozma-Bognár L., Hibberd V., Brown P. E., Turner M. S., Millar A. J., 2005. Extension of a genetic network model by iterative experimentation and mathematical analysis. Mol. Syst. Biol. 1, 1-9.
  • Martínez-García J. F., Huq E., Quail P. H., 2000. direct targeting of light signals to a promoter element-bound transcription factor. Science 288, 859-863
  • Nakajima M., Imai K., Ito H., Nishiwaki T., Murayama Y., Iwasaki H., Oyama T., 2005. Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308, 414-415.
  • Nakamichi N., Kita M., Niinuma K., Ito S., Yamashino T., Mizoguchi T., Mizuno T., 2007. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822-832.
  • Pregueiro A. M., Liu Q., Baker C. L., Dunlap J. C., Loros J. J., 2006. The Neurospora checkpoint kinase 2: a regulatory link between the circadian and cell cycles. Science 313, 644.
  • Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W., 1998. Double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83-95.
  • Pruneda-Paz J. L., Breton G., Para A., Kay S.A., 2009. A functional genomics approach reveals CHE as a component of the Arabidopsis circadian clock. Science 323, 1481-1485.
  • Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C., 1998. CYCLE is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805-814.
  • Saez L., Young M. W., 1996. Regulation of nuclear entry of the Drosophila clock proteins period and timeless. Neuron 17, 911-920.
  • Sato T. K., Panda S., Miraglia L. J., Reyes T. M., Rudic R. D., McNamara P., Naik K. A., Fitzgerald G. A., Kay S. A., Hogenesch J. B., 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron 43, 527-537.
  • Sawa M., Nusinow D., Kay S., Imaizumi T., 2007. FKF1 and GIGANTEA complex formation is required for day-length measurement in Arabidopsis. Science 318, 261-265.
  • Schafmeier T., Diernfellner A., Schäfer A., Dintsis O., Neiss A., Brunner M., 2008. Circadian activity and abundance rhythms of the Neurospora clock transcription factor WCC associated with rapid nucleo-cytoplasmic shuttling. Genes Develop. 22, 3397-402.
  • Smith R. M., Williams S. B., 2006. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc. Natl. Acad. Sci. USA 103, 8564-8569.
  • Stanewsky R., 2002. Clock mechanisms in Drosophila. Cell Tissue Res. 309, 11-26.
  • Suri V., Qian Z., Hall J. C., Rosbash M., 1998. Evidence that the TIM light response is relevant to light-induced phase shifts in Drosophila melanogaster. Neuron 21, 225-234.
  • Taylor P., Hardin P. E., 2008. Rhythmic E-box binding by CLK-CYC controls daily cycles in per and tim transcription and chromatin modifications. Mol. Cell. Biol. 28, 4642-4652.
  • Tóth R., Kevei E., Hall A., Millar A.J., Nagy F., Kozma-Bognár L., 2001. Circadian clock-regulated expression of phytochrome and cryptochrome genes in Arabidopsis. Plant Physiol. 127, 1607.
  • Virshup D. M., Eide E. J., Forger D. B., Gallego M., Vielhaber Harnish E., 2007. Reversible protein phosphorylation regulates circadian rhythms. Cold Spring Harb. Symp. Quant. Biol. 72, 413-420.
  • Vitalini M. W., de Paula R. M., Park W. D., Bell-Pedersen D., 2006. The rhythms of life: circadian output pathways in Neurospora. J. Biol. Rhyth. 21, 432-444.
  • Wang G. K., Ousley A., Darlington T. K., Che, D., Chen Y., Fu W., Hickman L. J., Kay S., Sehgal A., 2001. Regulation of the cycling of timeless (tim) RNA. J. Neurobiol. 47, 161-175.
  • Woelfle M. A., Xu Y., Qin X., Johnson C.H., 2007. Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc. Natl. Acad. Sci. USA 104, 18819.
  • Xu Y., Mori T., Johnson C. H., 2000. Circadian clock-protein expression in cyanobacteria: rhythms and phase setting. EMBO J. 19, 3349-3357.
  • Yamada Y., Forger D., 2010. Multiscale complexity in the mammalian circadian clock. Curr. Opin. Genet. Develop. 20, 626-633.
  • Yang Y., Cheng P., Zhi G., Liu Y. 2001. Identification of a calcium/calmodulin-dependent protein kinase that phosphorylates the Neurospora circadian clock protein FREQUENCY. J. Biol. Chem. 276, 41064-4172.
  • Yang Y., He Q., Cheng P., Wrage P., Yarden O., Liu, Y., 2004. Distinct roles for PP1 and PP2A in the Neurospora circadian clock. Genes Develop. 18, 255-260.
  • Yin L., Wu N., Lazar M., 2010. Nuclear receptor Rev-erbalpha: a heme receptor that coordinates circadian rhythm and metabolism. Nucl. Receptor Signaling 8, 1-6.
  • Yu J. W., Rubio V., Lee N. Y., Bai S., Lee S. Y., Kim S. S., Liu L., Zhang Y., Irigoyen M. L., Sullivan J.A., 2008. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. cell, 32, 617-630.
  • Yu W., Hardin P. E., 2006. Circadian oscillators of Drosophila and mammals. J. Cell Sci. 119, 4793-4795.
  • Yu W., Zheng H., Houl J. H., Dauwalder B., Hardin P. E., 2006. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Develop. 20, 723-733.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv61p305kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.