Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 2 | 233-244

Article title

Rodanaza i transferaza siarkowa 3-merkaptopirogronianu - enzymy pokrewne ewolucyjnie

Content

Title variants

EN
Rhodanese and 3-mercaptopyruvate sulfurtransferase - evolutionary related enzymes

Languages of publication

PL EN

Abstracts

PL
Endogenne związki siarki odgrywają ważną rolę w przebiegu wielu fizjologicznych procesów w organizmie, takich jak: stabilizacja struktury białek, regulacja aktywności enzymów oraz udział w procesach utleniania i redukcji (glutation, tioredoksyna). Transferazy siarkowe: rodanaza (transferaza siarkowa tiosiarczanu, EC 2.8.1.1) i transferaza siarkowa 3-merkaptopirogronianu (MPST, EC 2.8.1.2) są szeroko rozpowszechnionymi enzymami w świecie organizmów prokariotycznych i eukariotycznych. W komórkach ssaków MPST występuje w cytoplazmie i mitochondriach, zaś rodanaza głównie w mitochondriach. W przypadku niższych kręgowców takich jak: płazy, gady i ryby jej aktywność stwierdzono również w cytozolu. Rodanaza przenosi atomy siarki z anionowych donorów (związki zawierające siarkę sulfanową) na różne nukleofilowe akceptory. MPST katalizuje przeniesienie atomu siarki z 3-merkaptopirogronianu na nukleofilowe akceptory wytwarzając związki zawierające atomy siarki sulfanowej (jak np.: tiosiarczan) lub uwalnia ją w postaci siarkowodoru. Rodanaza i MPST są enzymami pokrewnymi ewolucyjnie. Świadczą o tym podobieństwa w strukturze genów, struktura trzeciorzędowej obydwu białek oraz strukturze miejsca aktywnego. Masy cząsteczkowe obydwu enzymów są podobne - około 33 kDa. Ponadto, enzymy te mają podobne właściwości fizykochemiczne i katalityczne. Aktywność katalityczna obydwu zaangażowanych w przemiany L-cysteiny enzymów zależna jest od reszty cysteinowej centrum aktywnego. Podczas katalizy enzymy te oscylują pomiędzy dwoma stabilnymi stanami: niezwiązanym z atomem siarki i związanym z dwuwartościowym atomem siarki z utworzeniem nadsiarczku z grupą tiolową miejsca aktywnego. Związki chemiczne zanieczyszczające środowisko i ksenobiotyki mogą łączyć się z grupami -SH tych enzymów obniżając ich aktywność i zmieniając poziom siarki sulfanowej - produktu desulfuracji L-cysteiny. Cysteina miejsca aktywnego enzymów tiolowych może uczestniczyć w procesach utlenienia i redukcji; MPST i rodanaza mogą funkcjonować jako miejscowe białkowe przeciwutleniacze. Reaktywne formy tlenu modyfikujące białka sygnałowe i/lub czynniki transkrypcyjne mogą wpływać na ekspresję genów, w tym również genu dla rodanazy, co ze względu na potencjalne terapeutyczne efekty może być interesujące z punktu widzenia medycyny molekularnej.
EN
Endogenous sulfur-containing compounds play an important role in numerous physiological processes in organisms, such as stabilization of protein structure, regulation of enzymatic activity, and they are engaged in redox reactions (glutathione, thioredoxine). Sulfurtransferases are enzymes widespread in nature. Rhodanese (thiosulfate sulfurtransferase, EC 2.8.1.1) and 3-mercaptopyruvate sulfurtransferase (MPST, EC 2.8.1.2) have been found in the majority of living organism. In animal cells, MPST is located in cytosol and mitochondria, while rhodanese distribution is restricted to mitochondria. In lower vertebrates, such as amphibians, reptiles and fish, it has been also detected in cytosol. Rhodanese transfers sulfur atoms from various donors (sulfane sulfur-containing compounds) to various acceptors. MPST catalyses the transfer of the sulfur atom from 3-mercaptopyruvate to various acceptors, producing sulfane sulfur containing compounds (e.g. thiosulfate), or releases it as hydrogen sulfide. Rhodanese and MPST are evolutionary related enzymes. Both of them have similar structure of gene, protein tertiary structure and the structure of active site. Molecular weight is also comparable - about 33 kDa. Moreover, they have similar physicochemical and catalytic properties. The catalytic activity of these two enzymes participating in L-cysteine metabolism depends on cysteine residues in their active sites. During catalysis, enzymes cycle between two stable intermediates: a sulfur-free form and a sulfur-substituted enzyme containing a divalent sulfur atom bound by persulfide linkage to the sulfhydryl group of the active site. Pollutants and xenobiotics can bind to -SH groups and, therefore, lower the activity of enzymes and change the level of sulfane sulfur, a product of L-cysteine desulfuration. The catalytic site cysteine of a thiol enzyme is redox active; MPST and rhodanese could locally serve as antioxidant proteins. Reactive oxygen species modify signal proteins and/or transcription factors and have an impact on rhodanese gene expression. It is interesting from the point of view of molecular medicine because of potential therapeutic effects.

Keywords

Journal

Year

Volume

61

Issue

2

Pages

233-244

Physical description

Dates

published
2012

Contributors

author
  • Katedra Biochemii Lekarskiej UJ CM, Kopernika 7, 31-034 Kraków, Polska
  • Katedra Biochemii Lekarskiej UJ CM, Kopernika 7, 31-034 Kraków, Polska
author
  • Katedra Biochemii Lekarskiej UJ CM, Kopernika 7, 31-034 Kraków, Polska
author
  • Katedra Biochemii Lekarskiej UJ CM, Kopernika 7, 31-034 Kraków, Polska

References

  • Adams H., Teertstra W., Koster M., Tommassen J., 2002. PspE (phage-shock protein E) of Escherichia coli is a rhodanese. FEBS Lett. 518, 173-176.
  • Agboola F. K., Fagbohunka B. S., Adenuga G. A., 2006. Activities od thiosulphate and 3-mercaptopyruvate-cyanide-sulphurtransferases in polutry birds and fruit bat. J. Biol. Sci. 6, 833-839.
  • Aita N., Ischii K., Akamatsu Y., Ogasawara Y., Tanabe S., 1997. Cloning and expression of human liver rhodanese cDNA. Biochem. Biophys. Res. Com. 231, 56-60.
  • Alphey M. S., Williams R. A., Mottram J. C., Coombs G. H., Hunter W. N., 2003. The crystal structure of Leishmania major 3-mercaptopyruvate sulfurtransferase. A three-domain architecture with a serine protease-like triad at the active site. J. Biol. Chem. 278, 48219-27. PDB ID: 1OKG (http://www.ebi.ac.uk/thornton-srv/databases/cgibin/CSA/CSA_Site_Wrapper.pl?pdb=1OKG.)
  • Al-Qarawi A. A., Mousa H. M., Ali B. H., 2001. Tissue and intracellular distribution of rhodanese and mercaptopyruvate sulfurtransferase in reminants and birds. Vet. Res. 32, 63-70.
  • Aminlari A., Gilanpour H., Taghavianpour H., Veseghi T., 1989. Comparative studies on the distribution of rhodanese and beta-mercaptopyruvate sulfurtransferase in different organs of sheep (Ovis aries) and cattle (Bos taurus). Comp. Biochem. Physiol. C 92, 259-262.
  • Aminlari M., Kunanithy V., Scaman Ch. H., 2002. Rhodanese distribution in porcine (Sus scrofa) tissues. Comp. Biochem. Physiol. Part B 132, 309-313.
  • Baskin S. I., Porter D. W., Rockwood G. A., Romano J. A., Patel H. C., Kiser R. C., Cook Ch. M., Ternay A. L., 1999. In vitro and in vivo comparison of sulfur donors as antidotes to acute cyanide intoxication. J. App. Toxicol. 19, 173-183.
  • Billaut-Laden I., Rat E., Allorge D., Crunelle-Thibaut A., Cauffiez C., Chevalier D., Lo-Guidice J. M., Broly F., 2006. Evidence for a functional genetic polymorphism of the human mercaptopyruvate sulfurtransferase (MPST), a cyanide detoxification enzyme. Toxicol. Lett. 165, 101-111.
  • Boggaram V., Horovitz P., Waterman M. R., 1985. Studies on rhodanese synthesis in bovine adrenocortical cells. Biochem. Biophys. Res. Com. 130, 407-411.
  • Bonomi F., Pagani S., Cerletti R.L., Cannella C., 1977. Rhodanese-mediated sulfur transfer to succinate dehydrogenase. Eur. J. Biochem. 72, 17-24.
  • Bonomi F., Pagani S., Kurtz D. M., 1985. Enzymatic synthesis of the 4Fe-4S clusters of Clostridium pasteurianum ferredoxin. Eur. J. Biochem. 148, 67-73.
  • Cereda A., Carpen A., Picariello G., Tedeschi G., Pagani S., 2009. The lack of rhodanese Rhda affects the sensitivity of Azotobacter vinelandii to oxidative events. Biochem J. 418, 135-143.
  • Dudek M., Frendo J., Koj A., 1980. Subcellular compartmentation of rhodanese and 3-mercaptopyruvate sulfurtransferase in the liver of some vertebrate species. Comp. Biochem. Physiol. 65B, 383-386.
  • Gliubich F., Gazerro M., Zanotti G., Delbono S., Bombieri G., Berni R., 1996.Active site structural features for chemically modified forms of rhodanese. J. Biol. Chem. 271, 21054-21061 (PDB ID: 2ORA).
  • Hargrove J. L., 1988. Persulfide generated from L-cysteine inactivates tyrosine aminotransferase. Requirement for a protein with cysteine oxidase activity and gamma-cystathionase. J. Biol. Chem. 263, 17262-17269.
  • Hargrove J. L., Wichman R. D., 1987. A cysteine-dependant inactivator of tyrosine aminotransferase co-purifies with gamma-cystathioniase (cysteine desulfurase). J. Biol. Chem. 262, 7351-7357.
  • Harris C. L., 1978. Mammalian tRNA sulfurtransferase: properties of the enzyme in rat liver. Nucleic Acids Res. 5, 599-613.
  • Hänzelmann P., Dahl J.U., Kuper J., Urban A., Müler-Theissen U., Leimkühler S., Schindelin H., 2009. Crystal structure of YnjE from Escherichia coli, a sulfurtransferase with three rhodanese domains. Protein Sci. 18, 2480-2491.
  • Hol W. G., Lijk L. J., Kalk K. H., 1983. The high resolution Three-dimensional structure of bovine liver rhodanese. Fund. Appl. Toxicol. 3, 370-376.
  • Horowitz P., De Toma F., 1970. Improved preparation of bovine liver rhodanese. J. Biol. Chem. 245, 984-985.
  • Horowitz P., Criscimagna N. L., 1986. Low concentrations of guanidinium chloride expose apolar sufraces and cause differential perturbation in catalytic intermediates of rodanese. Biol. Chem. 261, 15652-15658.
  • Hunt A., 1998. Human DNA sequence from done E146D10 on chromosome 22 contains thiosulfate sulfurtransferase (EC 2.8.1.1) (rhodanese) genes. Revised version, direct submission to GenBank/EBI Data Bank with accession number (HSE146D10).
  • Jamshidzadek A., Aminlari M., Rasekh H.-R., 2001. Rhodanese and arginase activity in normal and cancerous tissues of human breast, esophagus, stomach and lung. Arch. Irn. Med. 4, 88-92.
  • Jurkowska H., Wróbel M., 2008. N-acetyl-L-cysteine as a source of sulfane sulfur in astrocytoma and astrocyte cultures: correlation with cell proliferation. Amino Acids 34, 231-237.
  • Jurkowska H., Placha W., Nagahara N., Wróbel M., 2011a. The expression and activity of cystathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in human neoplastic cell lines. Amino Acids 41, 151-158.
  • Jurkowska H., Uchacz T., Roberts J., Wróbel M., 2011b. Potential therapeutic advantage of ribose-cysteine in the inhibition of astrocytoma cell proliferation. Amino Acids 41, 131-139.
  • Kato A., Ogura M., Suda M., 1966. Control mechanism in rat liver enzyme system converting L-methionine to L-cystine. 3. Noncompetitive inhibition of cystathionine synthetase-serine dehydratase by elemental sulfur and competitive inhibition of cystathionase-homoserine dehydratase by L-cysteine and L-cystine. J. Biochem. 59, 40-48.
  • Kessler D., 2006. Enzymatic activation of sulfur for incorporation into biomolecules in prokaryotes. Microbiol. Rev. 30, 825-840.
  • Kohanski R. A., Heinrikson R. L., 1990. Primary structure of avian hepatic rhodanese. J. Protein Chem. 9, 369-377.
  • Krueger K., Koch K., Jűhling A., Tepel M., Scholze A., 2010. Low expression of thiosulfrtransferase (rhodanese) predicts mortality in hemodialysis patients. Clin. Biochem. 43, 95-101.
  • Lang K., 1933. Die Rhodanbildung im Tierkörper. Biochem Z. 259, 243-256.
  • Meister A., 1953. Conversion of the α-keto analog cysteine to pyruvate and sulfur. Fed. Proc. 12, 245.
  • Meister A., Fraser P. E., Tice S. V., 1954. Enzimatic desulfuration of beta-mercaptopyruvate to puryvate. J. Biol. Chem. 206, 561-575.
  • Nagahara N., 2011. Catalytic site cysteine of thiol enzyme, sulfurtransferase. J. Amino Acids, 2011, 1-7.
  • Nagahara N., Nishino T., 1996. Role of amino acid residues in the active site of rat liver mercaptopyruvate sulfurtransferase. J. Biol. Chem. 271, 27395-27401.
  • Nagahara N., Katayama A., 2005. Post-translation regulation of mercaptopyruvate sulfurtransferase via a low redox potential in the maintenance of redox homeostasis. J Biol. Chem. 280, 34569-34576.
  • Nagahara N., Okazaki T., Nishino T., 1995. Cytosolic metcaptopyruvate sulfurtransferase is evolutionary related to mitochondrial rhodanese. Striking similarity in active site amino acid sequence and the increase in the mercaptopyruvate sulfurtransferase activity of rhodanese by site-directed mutagenesis. J. Biol. Chem. 270, 16230-16235.
  • Nagahara N., Ito T., Kimura H., Nishino T., 1998. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescencje and immunoelectron microscpoic studiem combined with biochemical analysis. Histochem. Cell Biol. 110, 243-250.
  • Nagahara N., Ito T., Minami M., 1999. Mercaptopyruvate sulfurtransferase as a defense against cyanide toxication: molecular properties and mode of detoxication. Histol. Histopathol. 14, 1277-1286.
  • Nagahara N., Sawada N., Nakagawa T., 2004. Affinity labeling of catalytic site, cysteine 247, in rat mercaptopyruvate sulfurtransferase by chloropyruvate as an analog of a substrate. Biochimistry 86, 723-729.
  • Nagahara N., Yoshii T., Abe Y., Matsumura T., 2007. Thioredoxin-dependant enzymatic activation of mercaptopyruvate sulfurtransferase. An intersubmit disulfide bond severs as a redox switch for activation. J. Biol. Chem. 282, 1561-1569.
  • Nagasawa H. T., Goon D. J., Crankshaw D. L., Vince R., Patterson S. E., 2007. Novel, orally effective cyanide antidotes. J. Med. Chem. 50, 6462-6464.
  • Nandi D. L., Horowitz P. M., Westley J., 2000. Rhodanese as a thioredoxin oxidase. Internat. J. Biochem. Cell Biol. 32, 465-473.
  • Nishino T., 1985. Reversible interconversion between sulfo and desulfo xanthine dehydrogenase. Adv. Exp. Med. Biol. 195, 259-262.
  • Nishino T., Usami C., Tsushima K., 1983. Reversible interconversion between sulfo and desulfo xantine oxidase in a system containing rhodanese, thiosulfate, and sulfhydryl reagent. Proc. Natl. Acad. Sci. USA 80, 1826-1829.
  • Ogasawara Y., Isoda S., Tanabe S., 1994. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymic capacity for sulfide production in the rat. Biol. Pharm. Bull. 17, 1535-1542.
  • Ogasawara Y., Suzuki T., Ishii K., Tanabe S., 1997. Modification of liver cytosol enzyme activities promoted in vitro by reduced sulfur species generated from cystine with gamma-cystathionase. Biochem. Biophys. Acta 1334, 33-43.
  • Ogasawara Y., Lacourciere G. M., Ishii K., Stadtman T.C., 2005. Characterization of potential selenium-binding proteins in the selenophosphate synthetase system. PNAS 102, 1012-1016.
  • Palenchar P. M., Buck C. J., Cheng H., Larson T. J., Mueller E. G., 2000. Evidence that ThiI, an enzyme shared between thiamin and 4-thiouridine biosynthesis, may be a sulfurtransferase that proceeds through a persulfide intermediate. J. Biol. Chem. 275, 8283-8286.
  • Pallini R., Guazzi G. C., Cannella C., Cacace M. G., 1991. Cloning and sequence analysis of the human liver rodanese: comparison with bovine and chicken enzymes. Biochem. Biophys. Res. Com. 180, 887-893.
  • Pinto J. T., Krasnikov B. F., Cooper A. J. L., 2006. Redox-sensitive proteins are potential targets of garlic-derived mercaptocysteine derivatives. J. Nutr. 136, 835S-841S.
  • Ploegman J. H., Drent G., Kalk K. H., Hol W. G., 1978. Structure of bovine liver rhodanese. I. Structure determination at 2,5 Å resolution and a comparison of the conformation and sequence of its two domanis. J. Mol. Biol. 123, 557-594.
  • Porter D. W., Baskin S. I., 1995. Specificity studies of 3-Mercaptopyruvate sulfurtransferase. J. Biochem. Toxicol. 10, 287-292.
  • Ramasamy S., Singh S., Taniere P., Langman M. J. S., Ego M. C., 2006. Sulfide-detoxifying enzymes in the human colon are decreased in cancer and upregulated in differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G288-G296.
  • Sabelli R., Iorio E., De Martino A., Podo F., Ricci A., Viticchie G., Rotilio G., Paci M., Melino S., 2008. Rhodanese - thioredoxin system and allyl sulfur compounds. FEBS J. 275, 3884-3899.
  • Shahbazkia H. R., Aminlari M., Tavana M., 2009. Distribution of the enzyme rhodanese in tissues of the cat (Felis catus). J. Feline Med. Surg. 11, 305-308.
  • Shibuya N., Mikami Y., Kimura Y., Nagahara N., Kimura H., 2009. Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J. Biochem. 146, 623-626.
  • Singleton D. R., Smith D. W., 1988. Improved assay for rhodanese in Thiobacillus spp. Environm. Microbiol. 54, 2866-2867.
  • Smirnov A., Comte C., Marger-Heckel A. M., Addis V., Krasheninnikov I. A., Martin R. P., Entelis N., Tarassov I., 2010. Mitochondrial enzyme rhodanese is essential for 5S ribosomal RNA import into human mitochondria. J. Biol. Chem. 285, 30792-30803.
  • Sörbo B., 1953. Crystalline rhodanese. Purification and physico-chemicalexamination. Acta Chem. Scand. 7, 1129-1136.
  • Sörbo B., 1957. Sulfite and complex-bound cyanide as sulfur acceptors for rhodanese. Acta Chem. Scand. 33, 267-269.
  • Sörbo B., 1960. On the mechanizm of sulfide oxidation in biological systems. Biochem. Biophys. Acta 38, 349-351.
  • Spallarossa A., Forlani F., Carpen A., Armirotti A., Pagani S., Bolongesi M., Bordo D., 2004. The 'rhodanese' fold and catalytic mechanism of 3-mercaptopyruvate sulfurtransferases: crystal structure of SseA from Escherichia coli. J. Mol. Biol. 335, 583-593.
  • Sura P., Wróbel M., Bronowicka P., 2006. Season Dependent Response of the Marsh Frog (Rana ridibunda) to cadmium exposure. Folia Biol. 54, 159-165.
  • Sura P., Bronowicka-Adamska P., Furtak E., Wróbel M., 2011. Effect of mercury ions on cysteine metabolism in Xenopus laevis tissues. Comp. Biochem. C. Physiol. Toxicol. Pharmacol. 154, 180-186.
  • Tanabe S., 2008. Development of assay methods for endogenous inorganic sulfur compounds and sulfurtransferases as evaluation of the physiological functions of bound sulfur. Yakugaku Zasshi 128, 881-900.
  • Thomas D., Surdin-Kerjan Y., 1997. Metabolism of sulfur amino acids in Saccharomyces cerevisiae. Microbiol. Molecular. Biol Rev. 61, 503-532.
  • Toohey J. I., 1989. Sulphane sulfur in biological systems: a possible regulatory role. Biochemistry 264, 625-632.
  • Ubuka T., 2002. Assay methods and biological roles of labile sulfur in animal tissues. J. Chromatogr. B. 781, 227-249.
  • Ubuka T., Hosaki Y., Nishina H., Ikeda T., 1985. 3-Mercaptopyruvate sulfurtransferase activity in guinea pig and rat tissues. Physiol. Chem. Phys. Med. NMR 17, 41-43.
  • Villarejo M., Westley J., 1963. Mechanism of rodanese catalysis of thiosulfate-lipoate oxidation-relation. J. Biol. Chem. 238, 4016-4020.
  • Westley J., 1973. Rhodanese. Advances in Enzymology & Related Areas of Molecular Biol. 39, 327-368.
  • Westley J., 1977. Sulfane-transfer catalysis by enzymes. Bioorg. Chem. 1, 371-390.
  • Westley J., 1980. Rhodanese and the sulfane pool. [W:] Enzymatic basis of detoxification. Jacoby W.B. (red.) Academic Press, New York 2, 246-262.
  • Westley J., Adler H., Westley L., Nishida C., 1983. The sulfurtransferases. Fundam Appl. Toxicol. 3, 377-382.
  • Williams R. A. M., Kelly S. M., Mottram J. C., Coombs G. H., 2003. 3-mercaptopyruvate sulfortransferase of Leishmania contains an unusual C-terminal extension and is involved in thioredoxin and antioxidant metabolism. J. Biol. Chem. 278, 1480-1486.
  • Wing D. A., Baskin S. I., 1992. Modifiers of mercaptopyruvate sulfurtransferase catalyzed conversion of cyanide to thiocyanate in vitro. J. Biochem. Toxicol. 7, 65-72.
  • Wong T. W., Harris M. A., Jankowicz C. A., 1974. Transfer ribonucleic acid of sulfurtransferase isolated from rat cerebral hemispheres. Biochemistry 13, 2805-2812.
  • Wong T. W., Harris M. A., Morris H. P., 1975. The presence of an inhibitor of RNA sulfurtransferase in Morris hepatomas. Biochem. Biophys. Res. Com. 65, 1137-1145.
  • Wood J. L., Fielder H., 1953. β-Mercaptopyruvate, a substrate for rhodanese. J. Biol. Chem. 205, 231-234.
  • Wróbel M., 2000. Comparative study on physiological roles of enzymes that participate in sulfane sulfur production and metabolism in animal tissues. Rozprawa habilitacyjna, Jagiellonian University Press, Kraków.
  • Wróbel M., Jurkowska H., Śliwa L., Srebro Z., 2004. Sulfurtransferases and cyanide detoxification in mouse liver, kidney and brain. Toxicol. Mech. Method. 14, 331-337.
  • Wróbel M., Jurkowska H., 2007. Menadione effect on L-cysteine desulfuration in U373 cells. Acta Biochim. Pol. 54, 407-411.
  • Yamanishi T., Kubota I., Tuboi S., 1983. Mechanism of the activation of delta-aminolevulinate synthetase in Rhodopseudomonas spheroides by rat liver mitohondrial function. J. Biochem. 94, 181-188.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p233kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.