PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2012 | 61 | 2 | 213-232
Article title

Regulacja metabolizmu giberelin u roślin

Content
Title variants
EN
Regulation of gibberellins metabolism in plants
Languages of publication
PL EN
Abstracts
PL
Gibereliny (GA), jako jedne z siedmiu klasycznych hormonów roślinnych, zajmują kluczową pozycję w regulacji wzrostu i rozwoju roślin. Wpływają one na większość procesów fizjologicznych tj. kiełkowanie nasion, wydłużanie łodyg czy indukcję kwitnienia. Z ponad stu trzydziestu różnych GA zidentyfikowanych u roślin, grzybów i bakterii, tylko nieliczne - GA1, GA3, GA4, GA5, GA6, GA7 - wykazują aktywność biologiczną, natomiast pozostałe są ich prekursorami lub produktami katabolizmu. Dzięki użyciu biochemicznych i genetycznych technik badawczych, w ciągu ostatnich kilkunastu lat poznano większość genów kodujących białka związane z biosyntezą i dezaktywacją GA, co pozwoliło na lepsze zrozumienie funkcjonowania tych fitohormonów u roślin. Większość enzymów zaangażowanych w metabolizm GA wykazuje wielofunkcyjność, dlatego mniejsza ich liczba, niż zakładano na początku, potrzebna jest do tworzenia takich struktur GA, które biorą czynny udział w kontroli wielu procesów fizjologicznych. Wiadomo również, że metabolizm GA jest ściśle regulowany zarówno przez bodźce wewnętrzne (m. in. hormony), bodźce zewnętrzne (m. in. jakość światła, fotoperiod, temperatura, stres), jak i aktualną fazę rozwoju rośliny (embriogeneza, kiełkowanie, rozwój wegetatywny i generatywny). Głównym celem niniejszej pracy jest podsumowanie obecnego stanu wiedzy na temat metabolizmu GA, a przede wszystkim próba znalezienia odpowiedzi na pytanie: jak zawartość cząsteczek hormonu w poszczególnych komórkach i tkankach jest regulowana podczas wzrostu i rozwoju roślin w różnych warunkach?
EN
Bioactive gibberellins (GA) are diterpene phytohormones that are biosynthesized through complex pathways and control different aspect of plants growth and development, such as seeds germination, stems elongation and floral induction. Among more than one hundred thirty GA identified from plants, fungi and bacteria, only small number of them - GA1, GA3, GA4, GA5, GA6, GA7 - are biologically active. Many non-bioactive GA exist in plants as precursor or deactivated metabolites. The GA metabolism pathway in plants has been studied for a long time, and large number of genes encoding the metabolism enzymes has been identified. Many of these enzymes are multifunctional and therefore fewer enzymes than might be expected are required to synthesize the various gibberellins structures. Increasing lines of evidence indicate that GA metabolism pathway is strictly regulated during plant development and in response to hormonal and environmental signals.In this review, we summarize our current understanding of the GA metabolism pathways, genes and enzymes in plant, and first of all we discuss how GA concentration is regulated during plant development under varying condition.
Keywords
Journal
Year
Volume
61
Issue
2
Pages
213-232
Physical description
Dates
published
2012
Contributors
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
author
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
author
  • Katedra Fizjologii Roślin i Biotechnologii, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
References
  • Achard P., Baghour M., Chapple A., Hedden P., Van Der Straeten D., Genschik P., Moritz T., Harberd N. P., 2007. The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc. Natl. Acad. Sci. USA 104, 6484-6489.
  • Achard P., Cheng H., De Grauwe L., Decat J., Schoutteten H., Moritz T., Van Der Straeten D., Peng J. R., Harberd N. P., 2006. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91-94.
  • Aukerman M. J., Sakai H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15, 2730-2741.
  • Bouquin T., Meier C., Foster R., Nielsen M. E., Mundy J., 2001. Control of specific gene expression by gibberellin and brassinosteroid. Plant Physiol. 127, 450-458.
  • CalvoA. P., Nicolas C., Nicolas G., Rodriguez D., 2004a. Evidence of a cross-talk regulation of a GA 20-oxidase (FsGA20ox1) by gibberellins and ethylene during the breaking of dormancy in Fagus sylvatica seeds. Physiol. Plant 120, 623-630.
  • Calvo A. P., Nicolas C., Lorenzo O., Nocolas G., Rodriguez D., 2004b. Evidence for positive regulation by gibberellins and ethylene of ACC oxidase expression and activity during transition from dormancy to germination in Fagus sylvatica L. seeds. J. Plant Growth Regul. 23, 44-53.
  • Cheng H., Qin L. Q., Lee S. C., Fu X. D., Richards D. E., Cao D. N., Luo D., Harberd N. P., Peng J. R., 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055-1064.
  • Curaba J., Moritz T., Blervaque R., Parcy F., Raz V., Herzog M., Vachon G., 2004. AtGA3ox2, a key gene responsible for bioactive gibberellin biosynthesis, is regulated during embryogenesis by LEAFY COTYLEDON 2 and FUSCA 3 in Arabidopsis. Plant Physiol. 136, 3660-3669.
  • Davies P. J., 2004. Plant hormones: biosynthesis, signal transduction, action! Dordrecht Kluwer Academic Publishers, Netherlands.
  • Eriksson S., Bohlenius H., Moritz T., Nilsson O., 2006. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172-2181.
  • Fleet C. M., Sun T. P., 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77-85.
  • Foo E. J., Platten D., Weller J. L., Reid J. B., 2006. PhyA and Cry1 act redundantly to regulate gibberellin levels during de-etiolation in blue light. Physiol. Plant 127, 149-156.
  • Frigerio M., Alabadi D., Perez-Gomez J., Garcia-Carcel L., Phillips A. L., Hedden P., Blazquez M. A., 2006. Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol. 142, 553-563.
  • Fukazawa J., Sakai T., Ishida S., Yamaguchi I., Kamiya Y., Takahashi Y., 2000. Repression of shoot growth, a bZIP transcriptional activator, regulates cell elongation by controlling the level of gibberellins. Plant Cell 12, 901-915.
  • Gabriele S., Rizza A., Martone J., Circelli P., Costantino P., Vittorioso P., 2010. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. Plant J. 61, 312-323.
  • Gazzarrini S., Tsuchiya Y., Lumba S., Okamoto M., McCourt P., 2004. The transcription factor FUSCA 3 controls developmental timing in Arabidopsis through the hormones gibberellins and abscisic acid. Dev. Cell 7, 373-385.
  • Gomez-Mena C., de Folter S., Costa M. M. R., Angenent G. C., Sablowski R., 2005. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429-438.
  • Goto N., Pharis R. P., 1999. Role of gibberellin in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Can. J. Bot. 77, 944-954.
  • Griffiths J., Murase K., Rieu I., Zentella R., Zhang Z. L., Powers S. J., Gong F., Phillips A. L., Hedden P., Sun T. P., Thomas S. G., 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18, 3399-3414.
  • Gruszczyńska A., Rakoczy-Trojanowska M., 2007. Charakterystyka genów ulegających ekspresji podczas somatycznej embriogenezy u roślin. Biotechnologia 76, 96-106.
  • Hay A., Kaur H., Phillips A., Hedden P., Hake S., Tsiantis M., 2002. The gibberellin pathway mediates KNOTTED1-type homeobox function in plants with different body plans. Curr. Biol. 12, 1557-1565.
  • Hedden P., Thomas S. G., 2006. Plant hormone signaling. Blackwell Publishing, Oxford.
  • Hu J., Mitchum M. G., Barnaby N., Ayele B. T., Ogawa M., Nam E., Lai W. C., Hanada A., Alonso J. M., Ecker J. R., Swain S. M., Yamaguchi S., Kamiya Y., Sun T. P., 2008. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320-336.
  • Igarashi D., Ishida S., Fukazawa J., Takahashi Y., 2001. 14-3-3 proteins regulate intracellular localization of the bZIP transcriptional activator RSG. Plant Cell 13, 2483-2497.
  • Ishida S., Fukazawa J., Yuasa T., Takahashi Y., 2004. Involvement of 14-3-3 signaling protein binding in the functional regulation of the transcriptional activator REPRESSION OF SHOOT GROWTH by gibberellins. Plant Cell 16, 2641-2651.
  • Izhaki A., Borochov A., Zamski E., Weiss D., 2002. Gibberellin regulates post-microsporogenesis processes in petunia anthers. Physiol. Plant 115, 442-447.
  • Jacobsen S. E., Olszewski N. E., 1991. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 97, 409-414.
  • Jager C. E., Symons G. M., Ross J. J., Smith J. J., Reid J. B., 2005. The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221, 141-148.
  • Jasiński S., Piazza P., Craft J., Hay A., Woolley L., Rieu I., Phillips A., Hedden P., Tsiantis M., 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15, 1560-1565.
  • Kaneko M., Itoh H., Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Ashikari M., Matsuoka M., 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35, 104-115.
  • Kim D. H., Yamaguchi S., Lim S., Oh E., Park J., Hanada A., Kamiya Y., Choi G., 2008. SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20, 1260-1277.
  • King R. W, Ben-Tal Y., 2001. A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition. Plant Physiol. 125, 488-496.
  • King R., Moritz T., Evans L. T., Martin J., Andersen C. H., Blundell C., Kardailsky I., Chandler P. M., 2006. Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol. 141, 498-507.
  • Kopcewicz J., Lewak S., 2002. Fizjologia roślin. Wydawnictwo Naukowe PWN, Warszawa.
  • Lau O. S., Deng X. W., 2010. Plant hormone signaling lightens up: integrators of light and hormones. Curr. Opin. Plant Biol. 13, 571-577.
  • MacMillan J., 2002. Occurrence of gibberellins in vascular plants, fungi and bacteria. J. Plant Growth Regul. 20, 387-442.
  • Marciniak K., Turowski T., Wilmowicz E., Frankowski K., Kęsy J., Kopcewicz J., 2010. Ligazy ubikwitynowo-białkowe w szlakach sygnałowych auksyn, jasmonianów i giberelin. Post. Biol. Kom. 2, 409-432.
  • Matsushita A., Furumoto T., Ishida S., Takahashi Y., 2007. AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol. 143, 1152-1162.
  • Mitchum M. G., Yamaguchi S., Hanada A., Kuwahara A., Yoshioka Y., Kato T., Tabata S., Kamiya Y., Sun T. P., 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804-818.
  • Ngo P., Ozga J. A., Reinecke D. M., 2002. Specificity of auxin regulation of gibberellin 20-oxidase gene expression in pea pericarp. Plant Mol. Biol. 49, 439-448.
  • Oh E., Yamaguchi S., Kamiya Y., Bae G., Chung W. I., Choi G., 2006. Light activates the degradation of PIL5 protein to promote seed germination through gibberellins in Arabidopsis. Plant J. 47, 124-139.
  • Oh E., Yamaguchi S., Hu J., Yusuke J., Jung B., Paik I., Lee H. S., Sun T. P., Kamiya Y., Choi G., 2007. PIL5, a phytochrome-interacting bHLH protein, regulates gibberellins responsiveness by binding directly to the GAI and RGA promoters in Arabidopsis seeds. Plant Cell 19, 1192-1208.
  • Oh E., Kang H., Yamaguchi S., Park J., Lee D., Kamiya Y., Choi G., 2009. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21, 403-419.
  • Olszewski N., Sun T. P., Gubler F., 2002. Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14, 61-80.
  • O'Neill D. P., Ross J. J., 2002. Auxin regulation of the gibberellin pathway in pea. Plant Physiol. 130, 1974-1982.
  • O'Neill D. P., Ross J. J., Reid J. B., 2000. Changes in gibberellin A1 levels and response during deetiolation of pea seedlings. Plant Physiol. 124, 805-812.
  • Ozga J. A., van Huizen R., Reinecke D. M., 2002. Hormone and seed-specific regulation of pea fruit growth. Plant Physiol. 128, 1379-1389.
  • Penfield S., Josse E. M., Kannangara R., Gilday A. D., Halliday K. J., Graham I. A., 2005. Cold and light control seed germination through the bHLH transcription factor SPATULA. Curr. Biol. 15, 1998-2006.
  • Perry S. E., Lehti M. D., Fernandez D. E., 1999. The MADS-domain protein Agamous-Like 15 accumulates in embryonic tissues with diverse origins. Plant Physiol. 120, 121-129.
  • Perry S. E., Nichols K. W., Fernandez D. E., 1996. The MADS domain protein AGL15 localizes to the nucleus during early stages of seed development. Plant Cell 8, 1977-1989.
  • Piskurewicz U., Tureckova V., Lacombe E., Lopez-Molina L., 2009. Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J. 28, 2259-2271.
  • Quesada V., Dean C., Simpson G. G., 2005. Regulated RNA processing in the control of Arabidopsis flowering. Int. J. Dev. Biol. 49, 773-780.
  • Ross J. J., O'Neill D. P., Smith J. J., Kerckhoffs L. H., Elliott R. C., 2000. Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J. 21, 547-552.
  • Sablowski R., 2007. Flowering and determinacy in Arabidopsis. J. Exp. Bot. 58, 899-907.
  • Sakamoto T., Kamiya N., Ueguchi-Tanaka M., Iwahori S., Matsuoka M., 2001a. KNOX homeodomain protein directly suppresses the expression of a gibberellin biosynthetic gene in the tobacco shoot apical meristem. Genes Dev. 15, 581-590.
  • Sakamoto T., Kobayashi M., Itoh H., Tagiri A., Kayano T., Tanaka H., Iwahori S., Matsuoka M., 2001b. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 125, 1508-1516.
  • Sakamoto T., Miura K., Itoh H., Tatsumi T., Ueguchi-Tanaka M., Ishiyama K., Kobayashi M., Agrawal G. K., Taketa S., Abe K., Miyao A., Hirochika H., Kitano H., Ashikari M., Matsuoka M., 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol. 134, 1642-1653.
  • Sakamoto T., Sakakibara H., Kojima M., Yamamoto Y., Nagasaki H., Inukai Y., Sato Y., Matsuoka M., 2006. Ectopic expression of KNOTTED1-like homeobox protein induces expression of cytokinin biosynthesis genes in rice. Plant Physiol. 142, 54-62.
  • Sanders P. M., Bui A. Q., Weterings K., McIntire K. N., Hsu Y. C., Lee P. Y., Truong M. T., Beals T. P., Goldberg R. B., 1999. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex Plant Reprod. 11, 297-322.
  • Schomburg F. M., Bizzell C. M., Lee D. J., Zeevaart J. A. D., Amasino R. M., 2003. Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15, 151-163.
  • Seo M., Hanada A., Kuwahara A., Endo A., Okamoto M., Yamauchi Y., North H., Marion-Poll A., Sun T. P., Koshiba T., Kamiya Y., Yamaguchi S., Nambara E., 2006. Regulation of hormone metabolism in Arabidopsis seeds: phytochrome regulation of abscisic acid metabolism and abscisic acid regulation of gibberellin metabolism. Plant J. 48, 354-366.
  • Shinomura T., Nagatani A., Hanzawa H., Kubota M., Watanabe M., Furuya M., 1996. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 93, 8129-8133.
  • Silverstone A. L., Chang C., Krol E., Sun T. P., 1997. Developmental regulation of the gibberellins biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 12, 9-19.
  • Souer E., Rebocho A. B., Bliek M., Kusters E., De Bruin R. A., Koes R., 2008. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20, 2033-2048.
  • Stavang J. A., Lindgard B., Erntsen A., Lid S. E., Moe R., Olsen J. E., 2005. Thermoperiodic stem elongation involves transcriptional regulation of gibberellin deactivation in pea. Plant Physiol. 138, 2344-2353.
  • Sun T. P., 2008. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. The Arabidopsis Book. American Society of Plant Biologists, Rockville, MD, doi/10.1199/tab.0103, http://www.aspb.org/publications/arabidopsis.
  • Tanaka-Ueguchi M., Itoh H., Oyama N., Koshioka M., Matsuoka M., 1998. Overexpression of a tobacco homeobox gene, NTH15, decreases the expression of a gibberellin biosynthetic gene encoding GA 20-oxidase. Plant J. 15, 391-400.
  • Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T. Y., Hsing Y. I., Kitano H., Yamaguchi I., Matsuoka M., 2005. Gibberellin Insensitive Dwarf 1 encodes a soluble receptor for gibberellin. Nature 437, 693-698.
  • Varbanova M., Yamaguchi S., Yang Y., McKelvey K., Hanada A., Borochov R., Yu F., Jikumaru Y., Ross J., Cortes D., Ma C. J., Noel J. P., Mander L., Shulaev V., Kamiya Y., Rodermel S., Weiss D., Picherskya E., 2007. Methylation of gibberellins by Arabidopsis GAMT1 and GAMT2. Plant Cell 19, 32-45.
  • Wang H., Caruso L. V., Downie A. B., Perry S. E., 2004. The embryo MADS domain protein AGAMOUS-like 15 directly regulates expression of a gene encoding an enzyme involved in gibberellin metabolism. Plant Cell 16, 1206-1219.
  • White C. N., Proebsting W. M., Hedden P., Rivin C. J., 2000. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination vs maturation pathways. Plant Physiol. 122, 1081-1088.
  • Wilmowicz E., Frankowski K., Glazińska P., Sidłowska M., Marciniak K., Kopcewicz J., 2011. Rola giberelin w regulacji kwitnienia roślin. Kosmos 60, 129-140.
  • Yamaguchi S., 2006. Gibberellin biosynthesis in Arabidopsis. Phytochem. Rev. 5, 39-47.
  • Yamaguchi S., 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225-251.
  • Yamaguchi S., Kamiya Y., Sun T. P., 2001. Distinct cell-specific expression patterns of early and late gibberellin biosynthetic genes during Arabidopsis seed germination. Plant J. 28, 443-453.
  • Yamauchi Y., Ogawa M., Kuwahara A., Hanada A., Kamiya Y., Yamaguchi S., 2004. Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16, 367-378.
  • Yanai O., Shani E., Dolezal K., Tarkowski P., Sablowski R., Sandberg G., Samach A., Ori N., 2005. Arabidopsis KNOXI proteins activate cytokinin biosynthesis. Curr. Biol. 15, 1566-1571.
  • Zhao X., Yu X., Foo E., Symons G. M., Lopez J., Bendehakkalu K. T., Xiang J., Weller J. L., Liu X., Reid J. B., Lin C., 2007. A study of gibberellin homeostasis and cryptochrome-mediated blue light inhibition of hypocotyl elongation. Plant Physiol. 145, 106-118.
  • Zhu Y., Nomura T., Xu Y., Zhang Y., Peng Y., Mao B., Hanada A., Zhou H., Wang R., Li P., Zhu X., Mander L. N., Kamiya Y., Yamaguchi S., He Z., 2006. Elongated Uppermost Internode encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18, 442-456.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv61p213kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.