Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2012 | 61 | 1 | 121-131

Article title

Alkohol a metabolizm żelaza

Content

Title variants

EN
Alcohol and iron metabolism

Languages of publication

PL EN

Abstracts

PL
Spożywanie alkoholu wiąże się z zaburzeniem metabolizmu żelaza. U pacjentów z alkoholową chorobą wątroby stwierdza się często zwiększoną zawartość żelaza w wątrobie, będącą skutkiem zwiększonej absorpcji żelaza w dwunastnicy. W ostatnich 12 latach dokonał się ogromny postęp w poznaniu molekularnych podstaw homeostazy żelaza u ssaków. Odkrycie hepcydyny, peptydu syntetyzowanego w wątrobie oraz jej roli w regulacji uwalniania żelaza z enterocytów absorpcyjnych i z makrofagów miało szczególnie duże znaczenie w poznaniu szlaków cyrkulacji żelaza w organizmie. Wiązanie się hepcydyny z występującą na błonie enterocytów ferroportyną, jedynym jak dotąd poznanym u ssaków eksporterem żelaza, powoduje przemieszczenie jej do wnętrza enterocytów a następnie degradację w lizosomach, co prowadzi do zahamowania absorpcji żelaza z diety. Molekularny mechanizm leżący u podłoża nadmiernej akumulacji żelaza w organizmie wywołanej przez spożywanie alkoholu polega na zahamowaniu ekspresji hepcydyny, co w konsekwencji prowadzi do zwiększenia transportu żelaza z enterocytów do krwioobiegu. Stres oksydacyjny wywołany przez alkohol ulega zaostrzeniu przez nadmierną akumulację żelaza wątrobie i jest przyczyną uszkodzenie wątroby u pacjentów z alkoholową chorobą wątroby.
EN
Consumption of alcohol is known to be associated with misregulation of iron metabolism. Patients with alcoholic liver disease frequently exhibit increased hepatic iron content, which is caused by the increased iron absorption in duodenum. Within the past 12 years an enormous progress has been made in understanding molecular basis of mammalian iron homeostasis. In particular, the discovery of liver-derived peptide, hepcidin, and its role in the concerted regulation of iron release from absorptive enterocytes and macrophages through interaction with ferroportin, the sole cellular iron exporter known in mammalian cells, has proved to be fundamental in the understanding of iron circulation in the body. The binding of hepcidin to ferroportin expressed at the surface of enterocytes induces its internalization and degradation, which in turn inhibits iron absorption from the diet. The molecular mechanisms underlying alcohol-induced iron accumulation in the body involves suppression of hepcidin expression in hepatocytes, which in consequence leads to increased duodenal iron transport. Exacerbation of alcohol-induced oxidative stress in the liver by iron overload is responsible for liver injury observed in the alcoholic liver disease.

Keywords

Journal

Year

Volume

61

Issue

1

Pages

121-131

Physical description

Dates

published
2012

Contributors

  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 1, 05-552 Wólka Kosowska, Polska
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 1, 05-552 Wólka Kosowska, Polska
  • Zakład Biologii Molekularnej, Instytut Genetyki i Hodowli Zwierząt PAN w Jastrzębcu, Postępu 1, 05-552 Wólka Kosowska, Polska

References

  • Abboud S., Haile D. J., 2000. A novel mammalian iron-regulated protein involved in intracellular iron metabolism. J. Biol. Chem. 275, 19906-19912.
  • Anderson G. J., Frazer D. M., McKie A. T., Vulpe C. D., Smith A., 2005. Mechanisms of haem and non-haem iron absorption: lessons from inherited disorders of iron metabolism. Biometals 18, 339-348.
  • Andrews N. C., 2007. When is a heme transporter not a heme transporter? When it's a folate transporter. Cell Metab. 5, 5-6.
  • Blachier F., Vaugelade P., Robert V., Kibangou B., Canonne-Hergaux F., Delpal S., Bureau F., Blottière H., Bouglé D., 2007. Comparative capacities of the pig colon and duodenum for luminal iron absorption. Can. J. Physiol. Pharmacol . 85, 185-192.
  • Bridle K., Cheung T. K., Murphy T., Walters M., Anderson G., Crawford D. G., Fletcher L. M., 2006. Hepcidin is down-regulated in alcoholic liver injury: implications for the pathogenesis of alcoholic liver disease. Alcohol. Clin. Exp. Res. 30, 106-112.
  • Buchanan W. M., 1969. Bantu siderosis - a review. Cent. Afr. J. Med . 15, 105-113.
  • Cederbaum A. I., 2006. Cytochrome P450 2E1-dependent oxidant stress and upregulation of anti-oxidant defense in liver cells. J. Gastroenterol. Hepatol . 3 (Suppl.), S22-S25.
  • Chan R. Y., Schulman H. M., Ponka P., 1993. Expression of ferrochelatase mRNA in erythroid and non-erythroid cells. Biochem. J. 292, 343-349.
  • Choi S. O., Cho Y. S., Kim H. L., Park J. W., 2007. ROS mediate the hypoxic repression of the hepcidin gene by inhibiting C/EBPalpha and STAT-3. Biochem. Biophys. Res. Commun. 356, 312-317.
  • Courselaud B., Pigeon C., Inoue Y., Inoue J., Gonzalez F. J., Leroyer P., Gilot D., Boudjema K., Guguen-Guillouzo C., Brissot P., Loréal O., Ilyin G., 2002. C/EBPalpha regulates hepatic transcription of hepcidin, an antimicrobial peptide and regulator of iron metabolism. Cross-talk between C/EBP pathway and iron metabolism. J. Biol. Chem. 277, 41163-41170.
  • Cylwik B., Chrostek L., Szmitkowski M., 2008. The effect of alcohol on the regulation of iron metabolism. Pol. Merkur. Lekarski. 25, 273-275.
  • Dandekar T., Stripecke R., Gray N. K., Goosen B., Constable A., Johansson H. E., Hentze M. W., 1990. Identification of a novel iron responsive element in murine and human erythroid δ aminolevulinic acid synthase mRNA. EMBO J. 10, 1903-1909.
  • De Domenico I., Ward D. M., Langelier C., Vaughn M. B., Nemeth E., Sundquist W. I., Ganz T., Musci G., Kaplan J., 2007. The molecular mechanism of hepcidin-mediated ferroportin down-regulation. Mol. Biol. Cell . 18, 2569-2578.
  • Donohue T. M., Osna N. A., Clemens D. L., 2006. Recombinant Hep G2 cells that express alcohol dehydrogenase and cytochrome P450 2E1 as a model of ethanol-elicited cytotoxicity. Int. J. Biochem. Cell. Biol . 38, 92-101.
  • Fleming M. D., Romano M. A., Su M. A., Garrick L. M., Garrick M. D., Andrews N. C., 1998. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95, 1148-1153.
  • Fletcher L. M., Powell L. W., 2003. Hemochromatosis and alcoholic liver disease. Alcohol 30, 131-136.
  • Fletcher L. M., Bridle K. R., Crawford D. H., 2003 Effect of alcohol on iron storage diseases of the liver. Best. Pract. Res. Clin. Gastroenterol. 17, 663-677.
  • French S. W., Benson N. C., Sun P. S., 1984. Centrilobular liver necrosis induced by hypoxia in chronic ethanol-fed rats. Hepatology 4, 912-917.
  • Galanello R., Origa R., 2010. Beta-thalassemia. Orphanet. J. Rare. Dis . 5, 11.
  • Harrison-Findik D. D., 2007. Role of alcohol in the regulation of iron metabolism. World J. Gastroenterol. 13, 4925-4930.
  • Harrison-Findik D. D., 2009. Is the iron regulatory hormone hepcidin a risk factor for alcoholic liver disease? World J. Gastroenterol . 15, 1186-1193.
  • Harrison-Findik D. D., Schafer D., Klein E., Timchenko N. A., Kulaksiz H., Clemens D., Fein E., Andriopoulos B., Pantopoulos K., Gollan J., 2006. Alcohol metabolism-mediated oxidative stress down-regulates hepcidin transcription and leads to increased duodenal iron transporter expression. J. Biol. Chem. 281, 22974-22982.
  • Harrison-Findik D. D., Klein E., Crist C., Evans J., Timchenko N., Gollan J., 2007. Iron-mediated regulation of liver hepcidin expression in rats and mice is abolished by alcohol. Hepatology 46, 1979-85.
  • Heritage M. L., Murphy T. L., Bridle K. R., Anderson G. J., Crawford D. H., Fletcher L. M., 2009. Hepcidin regulation in wild-type and Hfe knockout mice in response to alcohol consumption: evidence for an alcohol-induced hypoxic response. Alcohol. Clin. Exp. Res. 33, 1391-400.
  • Iqbal T., Diab A., Ward D. G., Brookes M. J., Tselepis C., Murray J., Elias E., 2009. Is iron overload in alcohol-related cirrhosis mediated by hepcidin? World J. Gastroenterol. 15, 5864-5866.
  • Keel S. B., Doty R. T., Yang Z., Quigley J. G., Chen J., Knoblaugh S., Kingsley P. D., De Domenico I., Vaughn M. B., Kaplan J., Palis J., Abkowitz J. L., 2008. A heme export protein is required for red blood cell differentiation and iron homeostasis. Science 319, 825-828.
  • Kikuchi G., Yoshida T., Noguchi M., 2005. Heme oxygenase and heme degradation. Biochem. Biophys. Res. Commun. 338, 558-567.
  • Krause A., Neitz S., Mägert H. J., Schulz A., Forssmann W. G., Schulz-Knappe P., Adermann K., 2000. LEAP-1, a novel highly disulfide-bonded human peptide, exhibits antimicrobial activity. FEBS Lett. 480, 147-150.
  • Lippi G., Franchini M., Favaloro E. J., Targher G., 2010. Moderate red wine consumption and cardiovascular disease risk: beyond the 'French paradox'. Semin. Thromb. Hemost. 36, 59-70.
  • Liu H., Colavitti R., Rovira I., Finkel T., 2005. Redox-dependent transcriptional regulation. Circ. Res. 97, 967-974.
  • McKie A. T., Barrow D., Latunde-Dada G. O., Rolfs A., Sager G., Mudaly E., Mudaly M., Richardson C., Barlow D., Bomford A., Peters T. J., Raja K. B., Shirali S., Hediger M. A., Farzaneh F., Simpson R. J., 2001. An iron regulated ferric reductase associated with the absorption of dietary iron. Science 291, 1755-1759.
  • Miranda-Mendez A., Lugo-Baruqui A., Armendariz-Borunda J., 2010. Molecular basis and current treatment for alcoholic liver disease. Int. J. Environ. Res Publ. Health 7, 1872-88.
  • Nemeth E., 2008. Iron regulation and erythropoiesis. Curr. Opin. Hematol. 15, 169-175.
  • Nemeth E., Ganz T., 2009. The role of hepcidin in iron metabolism. Acta. Haematol. 122, 78-86.
  • Nemeth E., Tuttle M. S., Powelson J., Vaughn M. B., Donovan A., Ward D. M., Ganz T., Kaplan J., 2004. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090-2093.
  • Nicolas G., Bennoun M., Devaux I., Beaumont C., Grandchamp B., Kahn A., Vaulont S., 2001. Lack of hepcidin gene expression and severe tissue iron overload in upstream stimulatory factor 2 (USF2) knockout mice. Proc. Natl. Acad. Sci. USA 98, 8780-8785.
  • Nicolas G., Bennoun M., Porteu A., Mativet S., Beaumont C., Grandchamp B., Sirito M., Sawadogo M., Kahn A., Vaulont S., 2002a. Severe iron deficiency anemia in transgenic mice expressing liver hepcidin. Proc. Natl. Acad. Sci. USA 99, 4596-4601.
  • Nicolas G., Chauvet C., Viatte L., Danan J.L., Bigard X., Devaux I., Beaumont C., Kahn A., Vaulont S., 2002b. The gene encoding the iron regulatory peptide hepcidin is regulated by anemia, hypoxia, and inflammation. J. Clin. Invest . 110, 1037-1044.
  • Park C. H., Valore E. V., Waring A. J., Ganz T., 2001. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806-7810.
  • Peyssonnaux C., Zinkernagel A. S., Schuepbach R. A., Rankin E., Vaulont S., Haase V. H., Nizet V., Johnson R. S., 2007. Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs). J. Clin. Invest . 117, 1926-1932.
  • Pietrangelo A., 2010. Hereditary hemochromatosis: pathogenesis, diagnosis, and treatment. Gastroenterology 139, 393-408.
  • Pigeon C., Ilyin G., Courselaud B., Leroyer P., Turlin B., Brissot P., Loréal O., 2001. A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. J. Biol. Chem. 276, 7811-7819.
  • Ponka P., Lok C. N., 1999. The transferrin receptor: role in health and disease. Int. J. Biochem. Cell. Biol. 31, 1111-1137.
  • Roetto A., Papanikolau G., Politou M., Alberti F., Gitrelli D., Christakis J., Loukopoulos D., Camaschella C., 2003. Mutant antimicrobial peptide hepcidin is associated with severe juvenile hemochromatosis. Nat. Genet. 33, 21-22.
  • Rouault T. A., 2003. Hepatic iron overload in alcoholic liver disease: why does it occur and what is its role in pathogenesis? Alcohol 30, 103-106.
  • Roy C. N., Andrews N. C., 2005. Anemia of inflammation: the hepcidin link. Curr. Opin. Hematol . 12, 107-111.
  • Shayeghi M., Latunde-Dada G. O., Oakhill J. S., Laftah A. H., Takeuchi K., Halliday N., Khan Y., Warley A., McCann F. E., Hider R. C., Frazer D. M., Anderson G. J., Vulpe C. D., Simpson R. J., McKie A. T., 2005. Identification of an intestinal heme transporter. Cell 122, 789-801.
  • Sikorska K., Bielawski K. P., Romanowski T., Stalke P., 2006. Hereditary hemochromatosis: the most frequent inherited human disease. Postepy Hig. Med. Dośw. 6, 667-676.
  • Verga Falzacappa M. V., Vujic Spasic M., Kessler R., Stolte J., Hentze M. W., Muckenthaler M. U., 2007. STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood 109, 353-358.
  • Viatte L., Vaulont S., 2009. Hepcidin, the iron watcher. Biochimie 91, 1223-1228.
  • Vulpe C. D., Kuo Y. M., Murphy T. L., Cowley L., Askwith C., Libina N., Gitschier J., Anderson G. J., 1999. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet. 21, 195-199.
  • Weinberg E. D., 1996. Iron withholding: a defense against viral infections. Biometals 9, 393-399.
  • Weiss G., 2009. Iron metabolism in the anemia of chronic disease. Biochim. Biophys. Acta 1790, 682-693.
  • Who, 2004. Global Status Report on Alcohol 2004. Dept. Mental Health and Substance Abuse, Geneva, Switzerland, 88.
  • Wrighting D. M., Andrews N. C., 2006. Interleukin-6 induces hepcidin expression through STAT3. Blood 108, 3204-3209.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv61p121kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.