Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 60 | 1-2 | 95-102

Article title

Wzajemnie relacje dżdżownic, roślin i mechowców*

Content

Title variants

EN
Mutual relationships of earthworms, plants and oribatid mites.

Languages of publication

PL EN

Abstracts

PL
Obecne badania ekologii gleby skupiają się na wpływie zróżnicowania roślinności na faunę glebową, a także na oddziaływaniach pomiędzy organizmami występującymi na powierzchni i w samej glebie. Gleba stanowi złożony system oddziaływań między organizmami ją zasiedlającymi. Praca niniejsza traktuje jedynie o trzech elementach tego systemu: o mechowcach, roślinach i inżynierskich dżdżownicach. Opisane zostały wzajemne ich oddziaływania a także ich wpływ na środowisko gleby.
EN
Current research of soil ecology focuses on the impact of diversity of vegetation on soil fauna, as well as the interactions between organisms occurring above and below soil surface. Soil is a complex system of interactions between soil dwellers. This paper deals only with the three elements of this system: oribatid mites, plants and engineering earthworms. This work described their mutual interaction and their impact on soil environment.

Keywords

Journal

Year

Volume

60

Issue

1-2

Pages

95-102

Physical description

Dates

published
2011

Contributors

  • Instytut Hodowli i Aklimatyzacji Roślin, Państwowy Instytut Badawczy, Radzików, 05-870 Błonie, Polska

References

  • Bardgett R. D., Cook R., 1998. Functional aspects of soil animal diversity in agricultural grasslands. Appl. Soil Ecol. 10, 263-276.
  • Behan-Pelletier V. M., 1999. Oribatid mite biodiversity in agroecosystems: role for bioindication. Agric. Ecos. Environ. 74, 411-423.
  • Bernier N., 1998. Earthworm feeding activity and development of the humus profile. Biol. Fertil. Soils 26, 215-223.
  • Bohlen P. J., Parmelee R. W., Blair J. M., 2004. Integrating the effects of earthworms on nutrient cycling across spatial and temporal scales. [W:] Earthworm ecology. Edwards C. A. (red.). CRC Press, Boca Raton.
  • Bouché M. B., 1977. Strategies lombricinnes. Ecol. Bull. 25, 122-132.
  • Brown G. B., 1995. How do earthworms affect microfloral and faunal community diversity? Plant Soil 170, 209-231.
  • Byzov B. A., Khomyakov N. V., 2004. The microbicidal activity of the earthworm gut extracts. Abstracts of 14th International Colloquium of Soil Zoology and Ecology, 120.
  • Cannon R. S. C., Block W., 1988. Cold tolerance of microarthropods. Biol. Rev. 63, 23-77.
  • Carter A., Heinonen J., de Vries J., 1982. Earthworms and water movement. Pedobiologia 23, 395-397.
  • Claperton M. J., Kanashiro D. A., Behan-Pelletier V. M., 2002. Changes in abundance and diversity of microarthropods associated with Fescue Prairie grazing regimes. Pedobiologia 46, 496-511.
  • Cole L., Dromph K. M., Boaglio V., Bardgett R. D. 2004. Effect of density and species richness of soil mesofauna on nutrient mineralisation and plant growth. Biol. Fertil. Soils 39, 337-343.
  • Curry J. P., 1994. Grassland invertebrates, ecology influence on soil fertility and effects on plant growth. Chapman & Hall, Londyn.
  • Dash M. C., Senapati B. K., Mishra C. C., 1980. Nematode feeding by tropical earthworms. Oikos 34, 322-325.
  • Devliegher W., Verstraete W., 1997. Microorganisms and soil physico-chemical conditions in the drilosphere of Lumbricus terrestris. Soil Biol. Biochem. 29, 1721-1729.
  • Domes K., Scheu S., Maraun M., 2007. Resources and sex: Soil re-colonization by sexual and parthenogenetic oribatid mites. Pedobiologia 51, 1-11.
  • Edwards C. A., Bohlen P. J., 1996. Biology and ecology of earthworms. Chapman & Hall, Londyn.
  • Edwards C. A., Fletcher K. E., 1988. Interactions between earthworms and microorganisms in organic matter breakdown. Agric. Ecosystems Environ. 24, 235-247.
  • Eisenbeis G., Wichard W., 1987. Atlas on the biology of soil arthropods. Springer-Verlag, Berlin.
  • Eisenhauer N., Scheu S., 2008a. Earthworms as drivers of the competition between grasses and legumes. Soil Biol. Bioch. 40, 2650-2659.
  • Eisenhauer N., Scheu S., 2008b. Invasibility of experimental grassland communities: the role of earthworms, plant functional group identity and seed size. Oikos 117, 1026-1036.
  • Feller C., Brown G. G., Blanchart E., Deleporte P., Chernyanskii S. S., 2003. Charles Darwin, earthworms and the natural sciences: various lesson from past to future. Agric. Ecos. Environ. 99, 29-49.
  • Francis G. S., Tabley F. J., Butler R. C., Fraser P. M., 2001. The burrowing characteristics of three earthworm species. Aust. J. Soil Res. 39, 1453-1456.
  • Fraser P. M., Beare M. H., Butler R. C., Harrison-Kirk T., Piercy J. E., 2003. Interactions between earthworms (Aporrectodea caliginosa), plants and crop residues for restoring properties of a degraded arable soil. Pedobiologia 47, 870-876.
  • Gulvik M., 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: a review. Pol. J. Ecol. 55, 415-440.
  • Gutiérrez López M., Ramajo Matesanz M., Jesús Lidón J. B., Díaz Cosín D. J., 2003. The effect of Hormogaster elisae (Hormogastridae) on the abundance of soil Collembola and Acari in laboratory cultures. Biol. Fertil. Soils 37, 231-236.
  • Haller T., Stolp H., 1985. Quantitative estimation of root exudation of maize plants. Plant and Soil 86, 207-216.
  • Hector A., Schmid B., Beierkuhnlein C., Caldeira M. C, Diemer M., Dimitrakopoulos P.G., Finn J., Freitas H., Giller P.S., Good J., Harris R., Högberg P., Huss-Danell K., Joshi J., Jumpponen A., Körner C., Leadley P. W. i współaut., 1999. Plant diversity and productivity experiments in European grasslands. Science 286, 1123-1127.
  • Huhta V., 2007. The role of soil fauna in ecosystems: A historical review. Pedobiologia 50, 489-495.
  • Huston M. A., Aarssen L. W., Austin M. P., Cade B. S., Fridley J. D. i współaut., 2000. No consistent effect of plant diversity on productivity. Science 289, 1255.
  • Ilieva-Makulec K., Olejniczak I., Szanser M., 2006. Response of soil micro- and mesofauna to diversity and quality of plant litter. Europ. J. Soil Biol. 42, 244-249.
  • Ingham R. E., Trofymow J. A., Ingham E. R., Coleman D. C., 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecol. Monographs 55, 119-140.
  • James S. W., Hendrix P. F., 2004. Invasion of Exotic earthworms into north America and other regions. [W:] Earthworm ecology. Edwards C. A. (red.). CRC Press, Boca Raton.
  • Jones C. G., Lawton J. H., Shachak M., 1994. Organisms as ecosystem engineers. Oikos 69, 373-386.
  • Jouquet P., Dauber J., Lagerlöf J., 2006. Soil invertebrates as ecosystem engineers: Intended and accidental effects on soil and feedback loops. App. Soil Ecol. 32, 153-164.
  • Kram K. J., 2001. Influence of leaf area on atmospheric input of elements to the ecosystems of the Kampinos National Park (Central Poland). Pol. J. Ecol. 49, 327-337.
  • Kretzchmar A., 1978. Quantification écologique des galeries de lombriciens. Techniques et premières estimations. Pedobiologia 18, 31-38.
  • Kreuzer K., Bonkowski M., Langel R., Scheu S., 2004. Decomposer animals (Lumbricidae, Collembola) and organic matter distribution affect the performance of Lolium perenne (Poaceae) and Trifolium repens (Fabaceae). Soil Biol. Biochem. 36, 2005-2011.
  • Krivoluckij D. A., 1976. Rol pancirnych kleszczej w biogeocenozach. Zool. 55, 226-236.
  • Laossi K.-R., Noguera D. C., Bartolomé-Lasa A., Mathieu J., Blouin M., Barot S., 2009. Effects on an endogeic and an anecic earthworm on the competition between four annual plants and their relative fecundity. Soil Biol. Biochem. 41, 1668-1673.
  • Lee K. E., 1994. The biodiversity of soil organisms. Appl. Soil. Ecol. 1, 251-254.
  • Loquet M., Bhatnagar T., Bouché M. B., Rouelle J., 1977. Essai d'estimation de l'influence écologique de lombriciens sur les microorganismes. Pedobiologia 17, 400-417.
  • Loranger G., Ponge J. E., Blanchart E., Lavelle P., 1998. Impact of earthworms on the diversity of microarthropods in vertisol (Martinique). Biol. Fertil. Soils 27, 21-26.
  • Loreau M., Naeem S., Inchausti P., Bengtsson J., Grime J. P., Hector A., Hooper D. U., Huston M. A., Raffaelli D., Schmid B., Tilman D., Wardle D. A., 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294, 804-808.
  • Maraun M., Salamon J.-A., Schneider K., Schaefer M., Scheu S., 2003. Oribatid mite and collembolan diversity, density and community structure in a moder beech forest (Fagus silvatica): effects of mechanical perturbation. Soil Biol. Biochem. 35, 1387-1394.
  • Maraun M., Visser S., Scheu S., 1998. Oribatid mites enhance the recovery of the microbial community after a strong disturbance. Appl. Soil Ecol. 9, 175-181.
  • Marinissen J. C. Y., Bok J., 1988. Earthworm-amended soil structure: Its influence on Collembola population in grassland. Pedobiologia 32, 243-252.
  • Martin J. A., 1977. Factors influencing the loss of organic carbon from wheat roots. Soil Biol. Biochem. 9, 1-7.
  • McKenzie B. M., Dexter A. R., 1993. Size and orientation of burrows made by the earthworms Aporrectodea rosea and A. caliginosa. Geoderma 56, 233-241.
  • McLean M. A., Parkinson D., 1998. Impacts of epigeic earthworm Dendrobaena octaedra on oribatid mite community diversity and microarthropod abundances in pine forest floor: a mesocosm study. Appl. Soil Ecol. 7, 125-136.
  • McLean M. A., Parkinson D., 2000. Introduction of epigeic earthworm Dendrobaena octaedra changes the oribatid community and microarthropod abundances in a pine forest. Soil Biol. Bioch. 32, 1671-1687.
  • McSorley R., Frederick J. J., 1996. Nematode community structure in rows and between rows of a soybean field. Fund. Appl. Nematol. 19, 251-261.
  • Milcu A., Partsch S., Langel R., Scheu S., 2006. The response of decomposers (earthworms, springtails and microorganisms) to variations in species and functional group diversity of plants. Oikos 112, 514-524.
  • Moody S. A., Piearce T. G., Dighton J., 1996. Fate of some fungal spores associated with wheat straw decomposition on passage through the gut of Lumbricus terrestris and Aporrectodea longa. Soil. Biol. Biochem. 28, 533-537.
  • Niedbała W., 1980. Mechowce - roztocze ekosystemów lądowych. PWN, Warszawa.
  • Niedbała W., 2004. Fauna Europaea: Oribatida [W:] Fauna Europaea, Magowski W. (red.). On-line. http://www.faunaeur.org/
  • Norton R. A., 1985. Aspects of the biology and systematics of soil arachnids particularly saprophagous and mycophagous mites. Quaest. Entomol. 21, 523-541.
  • Olejnik A. S., Byzov B. A., Bityutskij N. P., 2004. The effect of excretes of the earthworm Aporrectodea caliginosa on soil respiration. Abstracts of 14th International Colloquium of Soil Zoology and Ecology, 135.
  • Olszanowski Z., Rajski A., Niedbała W., 1996. Roztocze (Acari), mechowce (Oribatida). Katalog fauny Polski, 39.
  • Piearce T. G., 1978. Gut contents of some lumbricid earthworms. Pedobiologia 18, 153-157.
  • Pitkänen J., Nuutinen V., 1997. Distribution and abundance of burrows formed by Lumbricus terrestris L. and Aporrectodea caliginosa Sav. in the soil profile. Soil Biol. Biochem. 29, 463-467.
  • Raspotnig G., 2006. Chemical alarm and defence in the oribatid mite Collohmannia gigantea (Acari: Oribatida). Exp. Appl. Acarol. 39, 177-194.
  • Rożen A., Fijał K., Gruca B., 1995. Feeding ecology of some earthworms (Lumbricidae). Acta Zool. Fenn. 196, 90-91.
  • Ruf A., Beck L., 2005. The use of predatory mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotox. Environ. Safety 62, 290-299.
  • Rusek J., 1985. Soil microstructures - Contributions on specific soil organisms. Quaestiones Entomologicae 21, 497-514.
  • Salmon S., 2001. Earthworm excreta (mucus and urine) affect the distribution of springtails in forest soils. Biol. Fertil. Soils 34, 304-310.
  • Salmon S., Ponge J. F., 2001. Earthworm excreta attract soil springtails: laboratory experiments on Heteromurus nitidus (Collembola: Entomobryidae). Soil Biol. Biochem. 33, 1959-1969.
  • Scheu S., 2004. Effects of earthworms on plant growth: patterns and perspectives. Pedobiologia 47, 846-856.
  • Scheu S., Schulz E., 1996. Secondary succession, soil formation and development of a diverse community of oribatids and saprophagous soil macro-invertebrates. Biodiv. Conserv. 5, 235-250.
  • Scheu S., Theenhaus T., Jones H., 1999. Links between the detritivore and the herbivore system: effects of earthworms and Collembola on plant growth and aphid development. Oecologia 119, 541-551.
  • Schneider K., Migge S., Norton R. A., Scheu S., Langel R., Reineking, Maraun M., 2004. Trophic niche differentiation in soil microarthropods (Oribatida, Acari): evidence from stable isotope ratios (15N/14N). Soil Biol. Bioch. 36, 1769-1774.
  • Senapati B. K., 1992. Biotic interactions between soil nematodes and earthworms. Soil Biol. Biochem. 24, 1441-1444.
  • Shimano S., Sakata T., Mizutani Y., Kuwahara Y., Aoki J.-I., 2002. Geranial: the alarm pheromone in the nymphal stage of the oribatid mite, Nothrus palustris. J. Chem. Ecol. 28, 1831-1837.
  • Siemiann E., 1998. Experimental tests of effects of plant productivity and diversity on grassland arthropod diversity. Ecology 79, 2057-2070.
  • Siepel H., 1994. Life-history tactics of soil microarthropods. Biol. Fertil. Soils 18, 263-278.
  • Søvik G., Leinaas H. P., Ims R. A., Solhøy T., 2003. Population dynamics and life history of the oribatid mite Ameronothrus lineatus (Acari, Oribatda) on the high arctic archipelago of Svalbard. Pedobiologia 47, 257-271.
  • Springett J., Gray R., 1997. The interaction between plant roots and earthworm burrows in pasture. Soil Biol. Biochem. 29, 621-625.
  • Stanton N. L., 1979. Patterns of species diversity in temperate and tropical litter mites. Ecology 60, 295-304.
  • Swift M. J., Heal O. W., Anderson J. M., 1979. Decomposition in terrestrial ecosystems.Univ. California Press.
  • Tilman D., Downing J. A., 1994. Biodiversity and stability in grasslands. Nature 367, 363-365.
  • Tiunov A. V., Bonkowski M., Alphei J., Scheu S., 2001. Microflora, Protozoa and Nemetoda in Lumbricus terrestris burrows walls: a laboratory experiment. Pedobiologia 45, 46-60.
  • Tomati U., Galli E., Grappelli A., Di Lena G., 1990. Effect of earthworm casts on protein synthesis in radish (Raphanus sativum) and lettuce (Lactuga sativa) seedlings. Biol. Fert. Soils 9, 288-289.
  • Urbašek F., Pižl V., 1991. Activity of digestive enzymes in the gut of five earthworm species (Oligochaeta : Lumbricidae). Rev. Ecol. Bol. Sol 28, 461-468.
  • Wall D. H., Adams G., Parsons A. N., 2001. Soil biodiversity. [W:] Global biodiversity in a changing environment - scenarios for the 21st century. Stuart F., Sala E. O., Huber-Sannwald E. (red.). Springer, Nowy Jork.
  • Walter D. E., Moore J. C., Loring S.m 1989. Symphella sp. (Symphyla: Scolopendrellidae): predators of arthropods and nematodes in grassland soils. Pedobiologia 33, 113-116.
  • Walter D. E., Proctor H., 2004. Mites: ecology, evolution and behaviour. CABI Publishing, Wallingford.
  • Whitford W. G., 1996. The importance of the biodiversity of soil biota in arid ecosystems. Biodiv. Conserv. 5, 185-195.
  • Wurst S., Langel R., Scheu S., 2005. Do endogeic earthworms change plant competition? A microcosm study. Plant Soil 271, 123-130.
  • Żyromska-Rudzka H., 1976. The effect of mineral fertilization of a meadow on the oribatid mites and other soil mesofauna. Pol. Ecol. Studies 2, 157-182.
  • Żyromska-Rudzka H., 1978. The oribatid mite community as an ecosystem component accumulating and dispersing some chemical elements in an intensely fertilized meadow. Pol. Ecol. Studies 4, 107-121.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv60p95kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.