PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 3-4 | 435-444
Article title

Biosynteza chlorofilu: dwa mechanizmy redukcji protochlorofilidu

Content
Title variants
EN
Chlorophyll biosynthesis: two mechanisms of protochlorophyllide reduction
Languages of publication
PL EN
Abstracts
PL
W pracy podsumowano obecny stan wiedzy na temat dwu istniejących w przyrodzie mechanizmów reakcji redukcji protochlorofilidu do chlorofilidu. Redukcja protochlorofilidu jest jedną z ostatnich reakcji szlaku biosyntezy chlorofili i bakteriochlorofili - podstawowych barwników fotosyntetycznych. Reakcja ta może zachodzić w sposób niezależny od światła, katalizowany przez niezależną od światła reduktazę protochlorofilidu (DPOR) lub w procesie indukowanym światłem i katalizowanym przez zależną od światła oksydoreduktazę protochlorofilidu (LPOR). Mimo iż katalizują tę samą reakcję, enzymy LPOR i DPOR nie są spokrewnione, kodowane są przez różne geny, posiadają inną budowę cząsteczki oraz charakteryzuje je inny mechanizm katalizowanej reakcji.
EN
In the present paper, the current state of knowledge about two existing in nature mechanisms for the reduction of protochlorophyllide to chlorophyllide is presented. This reaction, which is a penultimate step of chlorophyll biosynthesis, can occur by either light-dependent or light-independent mechanisms, catalysed by light-dependent protochlorophyllide oxidoreductase (LPOR) or light-independent protochlorophyllide oxidoreductase (DPOR), respectively. LPOR and DPOR are completely different in their genes, protein structure and catalytic mechanism.
Keywords
Journal
Year
Volume
60
Issue
3-4
Pages
435-444
Physical description
Dates
published
2011
Contributors
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii Biofizyki i Biotechnologii UJ, Gronostajowa 7, 30-387 Kraków, Polska
  • Zakład Fizjologii i Biochemii Roślin, Wydział Biochemii Biofizyki i Biotechnologii UJ, Gronostajowa 7, 30-387 Kraków, Polska
References
  • Armstrong G. A., 1998. Greening in the dark: light-independent chlorophyll biosynthesis from anoxygenic photosynthetic bacteria to gymnosperms. J. Photochem. Photobiol. 43, 87-100.
  • Aronsson H., Sundqvist C., Dahlin C., 2003. POR hits the road: import and assembly of a plastid protein. Plant Mol. Biol. 51, 1-7.
  • Belyaeva O. B., Litvin F. F., 2007. Photoactive pigment-enzyme complexes of chlorophyll precursor in plant leaves. Biochemistry (Moscow) 72, 1458-1477.
  • Bollivar D. W., 2006. Recent advances in chlorophyll biosynthesis. Photosynth. Res. 90, 173-194.
  • Breznenová K., Demko V., Pavlovič A., Gálová E., Balážová R., Hudák J., 2010 Light-independent accumulation of essential chlorophyll biosynthesis- and photosynthesis-related proteins in Pinus mugo and Pinus sylvestris seedlings. Photosynthetica 48, 16-22.
  • Bröcker M. J., Schomburg S., Heinz D.W., Jahn D., Schubert W. D., Moser J., 2010a. Crystal Structure of the Nitrogenase-like Dark Operative Protochlorophyllide Oxidoreductase Catalytic Complex (ChlN/ChlB)2. J. Biol. Chem. 285, 27336-27345.
  • Bröcker M. J., Wätzlich D., Saggu M., Lendzian F., Moser J., Jahn D., 2010b. Biosynthesis of (Bacterio)chlorophylls. ATP-dependent transient subunit interaction and electron transfer of dark operative protochlorophyllide oxidoreductase. J. Biol. Chem. 285, 8268-8277.
  • Cahoon A.B., Timko M., 2003. Yellow-in-the-dark mutants of Chlamydomonas lack the ChlL subunit of light-independent protochlorophyllide reductase. Plant Cell 12, 559-568.
  • Cornah J. E., Terry M. J., Smith A. G., 2003. Green or red: what stops the traffic in the tetrapyrrole pathway? Trends Plant Sci. 8, 224-230.
  • Demko V., Pavlovič A., Valková D., Slováková L., Grimm B., Hudák J., 2009. A novel insight into the regulation of light-independent chlorophyll biosynthesis in Larix decidua and Picea abies seedlings. Planta 230, 165-176.
  • Eckhardt U., Grimm B., Hörtensteiner S., 2004. Recent advances in chlorophyll biosynthesis and breakdown in higher plants. Plant Mol. Biol. 56, 1-14.
  • Field C. B., Begrenfeld M. J., Randerson J. T., Fialkowski P., 1998. Primary Production of the Biosphere: Integration Terrestial and Oceanic Components. Science 281, 237-240.
  • Fujita Y., Bauer C. E., 2000. Reconstitution of light-independent protochlorophyllide reductase from purified BchL and BchN-BchB subunits: in vitro confirmation of nitrogenase like features of a bacteriochlorophyll biosynthesis enzyme. J. Biol. Chem. 275, 23583-23588.
  • Fujita Y., Takagi H., Hase T., 1998. Cloning of the gene encoding a protochlorophyllide reductase: the physiological signifi cance of the co-existence of light dependent and independent protochlorophyllide reduction systems in the cyanobacteria Plectonema boryanum. Plant Cell Physiol. 39, 177-185.
  • Griffiths W. T., 1978. Reconstitution of chlorophyllide formation by isolated etioplast membranes. Biochem. J. 174, 681-692.
  • Hendry G. A. F., Houghton J. D., Brown S. B., 1987. The degradation of chlorophyll - a biological enigma. New Phytologist 107, 255-302.
  • Heyes D. J., Hunter C. N., 2005. Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Plant Sci. 30, 642-649.
  • Heyes D. J., Martin G. E., Reid R. J., Hunter N., Wilks H. M., 2000. NADPH:protochlorophyllide oxidoreductase from Synechocystis: overexpression, purification and preliminary characterisation. FEBS Lett. 483, 47-51.
  • Klement H., Helfrich M., Oster U., Schoch S. Rüdiger W., 1999. Pigment-free NADPH:protochlorophyllide oxidoreductase from Avena sativa L. Purification and substrate specificity. Eur. J. Biochem. 265, 862-874.
  • Martin G. E., Timko M. P., Wilks H. M., 1997. Purification and kinetic analysis of pea (Pisum sativum L.) NADPH:protochlorophyllide oxidoreductase expressed as a fusion with maltose-binding protein in Escherichia coli. Biochem J. 325, 139-145.
  • Masuda T., 2008. Recent overview of the Mg branch of the tetrapyrrole biosynthesis leading to chlorophylls. Photosynth. Res. 96, 121-143.
  • Masuda T., Takamiya K., 2004. Novel insights into the enzymology, regulation and physiological functions of light-dependent protochlorophyllide oxidoreductase in angiosperms Photosynth. Res. 81, 1-29.
  • Masuda T., Fujita Y., 2008. Regulation and evolution of chlorophyll biosynthesis. Photochem. Photobiol. Sci. 7, 1131-1149.
  • Muraki N., Nomata J., Ebata K., Mizoguchi T., Shiba T., Tamiaki H., Kurisu G., Fujita Y., 2010. X-ray crystal structure of the light-independent protochlorophyllide reductase. Nature 465, 110-114.
  • Myśliwa-Kurdziel B., Strzałka K., 2010. Indukowana światłem redukcja protochlorofilidu u okrytonasiennych, a rozwój chloroplastów. Post. Bioch. 56, 418-426.
  • Nealson K. H, Conrad P. G., 1999. Life: past, present and future. Phil. Trans. R. Soc. B 354, 1923-1939.
  • Nomata J., Swem L. R., Bauer C. E., Fujita J., 2005. Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim. Biophys. Acta 1708, 229-237.
  • Nomata J., Kitashima M., Inoue K., Fujita Y., 2006. Nitrogenase Fe protein-like Fe-S cluster is conserved in L-protein (BchL) of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. FEBS Lett. 580, 6151-6154.
  • Nomata J., Ogawa T., Kitashima M., Inoue K., Fujita Y., 2008. NB-protein (BchN-BchB) of dark-operative protochlorophyllide reductase is the catalytic component containing oxygen-tolerant Fe-S clusters. FEBS Lett. 582, 1346-1350.
  • Reinbothe C., El Bakkouri M., Buhr F., Muraki N., Nomata J., Kurisu G., Fujita J., Reinbothe S., 2010. Chlorophyll biosynthesis: spotlight on protochlorophyllide reduction. Trends Plant Sci. 15, 614-624.
  • Ryter S. W., Tyrrel R. M., 2000. The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Rad. Biol. Med. 28, 289-309.
  • Sarma R., Barney B. M, Hamilton T. L., Jones A., Seefeldt L. C, Peters J. W., 2008. Crystal Structure of the L Protein of Rhodobacter sphaeroides Light-Independent Protochlorophyllide Reductase with MgADP Bound: A Homologue of the Nitrogenase Fe Protein. Biochemistry 47, 13004-13015.
  • Schoefs B., 2005. Protochlorophyllide reduction - what is new in 2005? Photosynthetica 43, 329-343.
  • Schoefs B., Franck F., 2003 Protochlorophyllide reduction: mechanisms and evolutions. Photochem. Photobiol. 78, 543-557.
  • Shui J., Saunders E., Needleman R., Nappi M., Cooper J., Hall L., Kehoe D. Stowe-Evans E., 2009. Light-dependent and light-independent protochlorophyllide oxidoreductases in the chromatically adapting cyanobacterium Fremyella diplosiphon UTEX 481. Plant .Cell Physiol. 50, 1507-1521.
  • Solymosi K., Schoefs B., 2008. Prolamellar body: a unique plastid compartment, which does not only occur in dark-grown leaves. [W:] Plant Cell Compartments - Selected Topics. Schoefs B. (red.). Research Sign Post, India, 152-202.
  • Solymosi K., Schoefs B., 2010. Etioplast and etio-chloroplast formation under natural conditions:the dark side of chlorophyll biosynthesis in angiosperms. Photosynth. Res. 105, 143-166.
  • Sundqvist C., Dahlin C., 1997. With chlorophyll pigments from prolamellar bodies to light-harvesting complexes. Physiol. Plant. 100, 748-759.
  • Sytina O.A., Heyes D. J., Hunter C. N., Groot M. L., 2009. Ultrafast catalytic processes and conformational changes in the light-driven enzyme protochlorophyllide oxidoreductase (POR). Biochem. Soc. Trans. 37, 387-391.
  • Willows R. D., 2003. Biosynthesis of chlorophylls from Protoporphyrin IX. Nat. Prod. Rep. 20, 327-341.
  • Yamazaki S., Nomata J., Fujita Y., 2006. Differential Operation of Dual Protochlorophyllide Reductases for Chlorophyll Biosynthesis in Response to Environmental Oxygen Levels in the Cyanobacterium Leptolyngbya boryana. Plant Physiol. 142, 911-922.
  • Yang J., Cheng Q., 2004. Origin and evolution of the light-dependent protochlorophyllide oxidoreductase (LPOR) genes. Plant Biology 6, 537-544.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p435kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.