PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 3-4 | 389-399
Article title

Symbioza owady-bakterie

Content
Title variants
EN
Insect-bacteria symbiosis
Languages of publication
PL EN
Abstracts
PL
Największe znaczenie w oddziaływaniach owady-bakterie mają mikroorganizmy, tzw. endosymbionty, które zasiedlają wnętrze ciała owada. Wśród nich wyróżnia się obligatoryjne i fakultatywne symbionty. Pierwsze z nich żyją w specjalnych komórkach owada zwanych bakteriocytami, które chronią bakterie przed działaniem hemolizyn i komórek żernych gospodarza. Fakultatywne endosymbionty występują głównie pozakomórkowo w hemolimfie owada. Zarówno obligatoryjna jak i fakultatywna mikroflora wpływa na utrzymanie prawidłowej kondycji zdrowotnej gospodarza, jego żywotności, odporności na patogeny i wysoką temperaturę. Bakteryjna flora owadów odpowiedzialna jest za produkcję witamin, aminokwasów, związków chemicznych będących prekursorami feromonów a także enzymów niezbędnych podczas trawienia celulozy. Znane są symbiotyczne bakterie, które chronią swoich gospodarzy przed grzybowymi patogenami, stresem cieplnym a nawet spadkiem liczebności innych symbiotycznych mikroorganizmów znajdujących się w ciele tego samego owada. Przerwanie symbiotycznych interakcji miedzy bakteriami a owadami może być sposobem walki z owadami przenoszącymi chorobotwórcze dla człowieka mikroorganizmy. Jednym ze znanych sposobów jest eliminacja endosymbiontów, co prowadzi do śmierci owada. Inna strategia obejmuje modyfikacje genetyczne mikroorganizmów, których zmieniony metabolizm prowadzi do zaburzenia cyklu życiowego owada.
EN
Insects are among the most successful animals on Earth both with regard to their biomass and biodiversity. In 1965, Paul Buchner first described the symbiotic, intracellular specific microorganisms. It is estimated that up to 20% of all insects are associated with microorganisms. This relationship has greatly contributed to insects' evolutionary success. Symbiotic bacteria live in specialized cells called the bacteriocytes (mycetocytes), fat body or insects gut. These bacteria may have a role in nutritional upgrading of their hosts' diets. For example, all aphids require a primary endosymbiont, the bacterium Buchnera sp., to synthesize the nutrients missing in their xylem food source. The improvement of health condition of the host resistance to pathogens and high temperature is associated with the presence of specific microflora. Extremely stable interactions between insects and bacteria are the result of specific genetic mechanisms. Analysis of 16S rRNA gene sequence allowed the identification of these microorganisms because their culture is not possible on traditional microbiological media. The genome sequence analysis enabled the discovery of their metabolic functions. Researches on insect-symbiotic bacteria interactions allowed for the application of new strategies to pest control. New methods are less toxic to the environment.
Keywords
Journal
Year
Volume
60
Issue
3-4
Pages
389-399
Physical description
Dates
published
2011
Contributors
  • Katedra Mikrobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski w Katowicach, Jagiellońska 28, 40-032 Katowice, Polska
  • Katedra Mikrobiologii, Wydział Biologii i Ochrony Środowiska, Uniwersytet Śląski w Katowicach, Jagiellońska 28, 40-032 Katowice, Polska
References
  • Aanen D. K., Slippers B., Wingfield M. J. 2009. Biological pest control in beetle agriculture. Trends Microbiol. 17, 5, 179-182.
  • Aksoy S. 2000. Tsetse-a haven for microorganisms. Parasitol. Today 16, 3, 114-118.
  • Bandi C., Damiani G., Magrassi L., Grigolo A., Fani R., Sacchi L. 1994. Flavobacteria as intracellular symbionts in cockroaches. Proc. R. Soc. Lond. B. 257, 43-48.
  • Baumann L., Baumann P. 2005. Cospeciation between the primary endosymbionts of mealybugs and their hosts. Curr. Microbiol. 50, 84-87.
  • Baumann P., Moran N. A. 1997. Non-cultivable microorganisms from symbiotic associations of insects and other hosts. Antonie Van Leeuwenhoek 72, 39-48.
  • Beard C. B., Dotson E. M., Pennington P. M., Eichler S., Cordon-Rosales C., Durvasula R. V. 2001. Bacterial symbiosis and paratransgenic control of vectorborne Chagas disease. Int. J. Parasitol. 31, 621-627.
  • Bell W. J., Roth L. M., Nalepa C. 2007. Cockroaches: ecology, behavior and natural history. The Johns Hopkins University Press. Baltimore.
  • Boursaux-Eude C., Gross R. 2000. New insights into symbiotic associations between ants and bacteria. Res. Microbial. 151, 513-519.
  • Brinza L., Vinuelas J., Cottret L., Calevro F., Rahbe Y., Febvary G., Duport G., Colella S., Rabatel A., Gautier Ch., Fayard J. M., Sagot M. F., Charles H. 2009. Systematic analysis of the symbiotic function of Buchnera aphidicola, the primary endosymbiont of the pea aphid Acyrthosiphon pisum. C. R. Biol. 322, 1034-1049.
  • Brownlie J. C., Johnson K. N. 2009. Symbiont-mediated protection in insect hosts. Trends Microbiol. 17, 8, 348-354.
  • Brune A., Friedrich M. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3, 263-269.
  • Chlebicki A. 2004. Wspólna gra: grzyby, rośliny, owady-wstęp. Kosmos 53, 1, 1-2.
  • Cruden D. L., Markovetz A. J. 1979. Carboxymethyl cellulose decomposition by intestinal bacteria of cockroaches. Appl. Environ. Microbiol. 38, 3, 369-372.
  • Cruden D. L., Markovetz A. J. 1987. Microbial ecology of the cockroach gut. Annu. Rev. Microbiol. 41, 617-643.
  • Dale C., Moran N. A. 2006. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453-465.
  • Degnan P. H., Yu Y., Sisneros N., Wing R. A., Moran N. A. 2009. Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106, 22, 9063-9068.
  • Dillon R., Charnley K. 2002. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 153, 503-509.
  • Douglas A. E. 2007. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotechnol. 25, 8, 338-342.
  • Durvasula R. V., Gumbs A., Panackal A., Kruglov O., Aksoy S., Merrifield R. B., Richards F. F., Beard C. B. 1997. Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc. Natl. Acad. Sci. USA 94, 3274-3278.
  • Feldhaar H., Gross R. 2008. Immune reactions of insects on bacterial pathogens and mutualists. Microbes Infect. 10, 1082-1088.
  • Feldhaar H., Gross R. 2009. Insects as hosts mutualistic bacteria. Int. J. Med. Microbiol. 299, 1-8.
  • Foglesong M. A., Walker D. H., Puffer J. S., Markovetz A. J. 1975. Ultrastructural morphology of some Procaryotic microorganisms associated with the hindgut of cockroaches. J. Bacteriol. 123, 1, 336-345.
  • Geiger A., Fardeau M. L., Grebaut P., Vatunga G., Josenando T., Herder S., Cuny G., Truc P., Ollivier B. 2009. First isolation of Enterobacter, Enterococcus, and Acinetobacter spp. as inhabitants of the tsetse fly (Glossina papalis papalis) midgut. Infect. Genet. Evol. 9, 1364-1370.
  • Gijzen H. J., Barugahare M. 1992. Contribution of anaerobic Protozoa and methanogenes to hindgut metabolic activities of the American cockroach, Periplaneta americana. Apply. Environ. Microbiol. 58, 8, 2565-2570.
  • Gijzen H. J., Van Der Drift Ch., Barugahare M., Op Den Camp H. J. M. 1994. Effect of host diet and hindgut microbial composition on cellulolytic activity in the hindgut of the American cockroach Periplaneta americana. Appl. Environ. Microbiol. 60, 6, 1822-1826.
  • Gottlieb Y., Ghanim M., Gueguen G., Kontsedalov S., Vavre F., Fleury F., Zchori-Fein E. 2008. Inherited intracellular ecosystem: symbiotic bacteria share bacteriocytes in whiteflies. FASEB J. 22, 7, 2591-2599.
  • Graczyk T. K., Knight R., Tamang L. 2005. Mechanical transmission of human protozoa parasites by insects. Clin. Microbiol. Rev. 18, 1, 128-132.
  • Grandcolas P., Deleporte P. 1996. The origin of protistan symbionts in termites and cockroaches: a phylogenetic perspective. Cladistics 12, 93-98.
  • Gurowiec A. 2008. Udział mikroorganizmów w procesach trawiennych karaczana madagaskarskiego (Gromphadorhina portentosa) w różnych odcinkach i kompartymentach przewodu pokarmowego-aktywność glikolityczna. Praca magisterska. Katedra Fizjologii Zwierząt i Ekotoksykologii. Uniwersytet Śląski w Katowicach.
  • Hazir S., Kaya H. K., Stock S. P., Keskin N. 2003. Entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) for biological control of soil pests. Turk. J. Biol. 27, 181-202.
  • Kaltenpoth M., Gottler W., Herzner G., Strohm E. 2005. Symbiotic bacteria protect wasp larvae from fungal infestation. Curr. Biol. 15, 475-479.
  • Klass K. D., Nalepa Ch., Lo N. 2008. Wood-feeding cockroaches as model for termite evolution (Insecta: Dictyoptera): Cryptocercus vs. Parasphaeria boleriana. Mol. Phylogenet. Evol. 46, 809-817.
  • Klasson L., Andersson S. G. E. 2004. Evolution of minimal-gene-sets in hostdependent bacteria. Trends Microbiol. 12, 1, 37-43.
  • Kono M., Koga R., Shimada M., Fukatsu T. 2008. Infection dynamics of coexisting Beta- and Gamma-proteobacteria in the nested endosymbiotic system of mealybugs. Appl. Environ. Microbiol. 74, 13, 4175-4184.
  • Kotełko K., Sedlarczek L., Lachowicz T. M. 1984. Biologia bakterii. Państwowe Wydawnictwo Naukowe PWN. Warszawa.
  • Lacey L. A., Frutos R., Kaya H. K., Vail P. 2001. Insect pathogens as biological control agents: do they have a future? Biol. Control. 21, 230-248.
  • Lawrence J. G. 2005. Common themes in the genome strategies of pathogens. Curr. Opin. Genet. Dev. 15, 584-588.
  • Lemke T., Van Alen T., Hackstein J. H. P., Brune A. 2001. Cross-epithelial hydrogen transfer from the midgut compartment drives methanogenesies in the hingut of cockroaches. Appl. Environ. Microbiol. 67, 10, 4657-4661.
  • Leśniewski B. 2006. Zarobaczone szpitale. Zakażenia szpitalne 1, 68-73.
  • Little A. E. F., Currie C. R. 2007. Symbiotic complexity: discovery of a fifth symbiont in the attine ant-microbe symbiosis. Biol. Lett. 3, 501-504.
  • Lopez-Sanchez M., Neef A., Pereto J., Patino-Navarrete R., Pignatelli M., Latorre A., Moya A. 2009. Evolutionary convergence and nitrogen metabolism in Blattabacterium strain bge, primary endosymbiont of the cockroach Blattella germanica. PLoS Genetic 5, 11, 1-11.
  • Mccutcheon J. P., Moran N. A. 2007. Parallel genomic evolution and metabolic interdependence in an ancient symbiosis. PNAS 104, 4, 19392-19397.
  • Mira A., Moran N. A. 2002. Estimating population size and transmission bottlenecks in maternally transmitted endosymbiotic bacteria. Microb. Ecol. 44, 137-143.
  • Mira A., Ochman H., Moran N. A. 2001. Deletional bias and the evolution of bacterial genomes. Trends Genet. 17, 10, 589-596.
  • Moran N. A. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583-586.
  • Moran N. A. 2003. Tracing the evolution of gene loss in obligate bacterial symbionts. Curr. Microbiol. 6, 512-518.
  • Moran N. A. 2006. Symbiosis. Curr. Biol. 16, 20, 866-871.
  • Moran N. A., Baumann P. 2000. Bacterial endosymbionts in animals. Curr. Opin. Microbiol. 3, 270-275.
  • Mrazek I., Strosova L., Fliegerova K., Kott T., Kopecny J. 2008. Diversity of intestinal microflora. Folia Microbiol. 53, 3, 229-233.
  • Noda S., Hongoh Y., Sato T., Ohkuma M. 2009. Complex coevolutionary history of symbiotic Bacterioidales bacteria of various protists in the gut of termites. BMC Evol. Biol. 9, 158.
  • Nogrady B. 2009. Pasożyt pomocny człowiekowi. Świat nauki 4, 212, 14.
  • Ohkuma M. 2008. Symbioses of flagellates and procariotes in the gut of lower termites. Trends Microbiol. 16, 7, 345-352.
  • Pai H-H., Chen W-Ch., Peng Ch-F. 2005. Isolation of bacteria with antibiotic resistance from household cockroaches (Periplaneta americana and Blattella germanica). Acta Trop. 93, 259-265.
  • Pontes M. H., Dale C. 2006. Culture and manipulation of insect facultative symbionts. Trends Microbiol. 14, 9, 406-411.
  • Prado M. A., Gir E., Pereira M. S., Reis C., Pimenta F. C. 2006. Profile of antimicrobial resistance of bacterial isolated from cockroaches (Peripaneta americana) in Brazilian health care institution. Braz. J. Infect. Dis. 10, 1, 26-32.
  • Rajagopal R. 2009. Beneficial interactions between insects and gut bacteria. Indian. J. Microbiol. 49, 114-119.
  • Riegler M., O'neill S. L. 2007. Evolutionary dynamics of insect symbiont associations. Trends Ecol. Evol. 22, 12, 625-627.
  • Robertson A. R. 2006. The isolation and characterization of the microbial flora in the alimentary canal of Gromphadorhina portentosa based on rDNA sequences. Praca doktorska. Department of Biological Sciences. East Tennessee State University.
  • Sacchi L., Genchi M., Clementi E., Bigliardi E., Avanzati A. M., Pajoro M., Negri I., Maezoratio M., Gonella E., Alma A., Daffonchio D., Bandi C. 2008. Multiple symbiosis in the leafhopper Scaphoideus titanus (Hemiptera: Cicadellidae): detalis of transovarial transmission of Cardinium sp. and yeast-like endosymbionts. Tissue Cell 40, 231-242.
  • Salehzadeh A., Tavacol P., Mahjub H. 2007. Bacterial, fungal and parasitic contamination of cockroaches in public hospitals of Hamadan. Iran. J. Vect. Borne. Dis. 44, 105-110.
  • Sanchez-Contreras M., Vlisidou I. 2008. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol. Genet. Eng. Rev. 2
  • Schaber J., Rispe C., Werngreen J., Buness A., Delmotte F., Silva F. J., Moya A. 2005. Gene expression levels influence amino acid usage and evolutionary rates in endosymbiotic bacteria. Gene 6, 352, 109-117.
  • Silva F. J., Latorre A., Moya A. 2003. Why are the genomes endosymbiotic bacteria so stable? Trends Genet. 19, 4, 176-180.
  • Steinhaus E. A. 1940. The microbiology of insects. Bacteriol. Rev. 4, 1, 17-57.
  • Stingl U., Radek R., Yang H., Brune A. 2005. 'Endomicrobia': cytoplasmic symbiont of termite gut protozoa from a separate phylum of procariotes. Appl. Environ. Microbiol. 71, 3, 1473-1479.
  • Tatfeng Y. M., Usuanlele M. U., Orukpe A., Digban A. K., Okodua M., Oviasogie F., Turay A. A. 2005. Mechanical transmission of pathogenic organisms: the role of cockroaches. J. Vect. Borne Dis. 42, 129-134.
  • Thao M. L., Clark M. A., Baumann L., Brennan E. B., Moran N. A., Baumann P. 2000. Secondary endosymbionts of psyllids have been acquired multiple times. Curr. Microbiol. 41, 300-304.
  • Tokuda G., Lo N., Takase A., Yamada A., Hayashi Y., Watanabe H. 2008. Purification and partial genome characterization of the bacterial endosymbiont Blattabacterium cuenoti from the fat bodies of cockroaches. BMC Res. Notes, 1, 118.
  • van Hoek A. H. A. M., Van Alen T. A., Sprakel V. S. I., Leunissen J. A. M., Brigge T., Vogels G. D., Hackstein J. H. P. 2000. Multiple acquisition of methanogenic aecheal symbionts by anaerobic ciliates. Mol. Biol. Evol. 17, 251-258.
  • Vautrin E., Vavre F. 2009. Interactions between vertically transmitted symbionts: cooperation or conflict? Trends Microbiol. 17, 3, 95-99.
  • Wernegreen J. J. 2005. For better or worse: genomic consequences of intracellular mutualism and parasitism. Curr. Opin. Genet. Dev. 15, 572-583.
  • Wilkinson T. L. 1998. The elimination of intracellular microorganisms from insects: an analysis of antibiotic-treatment in the pea aphid (Acyrthosiphon pisum). Comp. Biochem. Physiol. Part A 119, 871-881.
  • Wu Ch-H., Lee M-F. 2005. Molecular characteristics of cockroach allergens. Cell. Mol. Immunol. 2, 3, 177-180.
  • Zient E., Feldhaar H., Stoll S., Gross R. 2005. Insights into the microbial world associated with ants. Arch. Microbiol. 184, 199-209.
  • Zurek L., Keddie B. A. 1996. Contribution of the colon and colonic bacterial flora to metabolism and development of the American cockroach Periplaneta americana L. J. Insect Physiol. 42, 8, 743-748.
  • Zurek L., Keddie B. A. 1998. Significance of methanogenic symbionts for development of the American cockroach, Periplaneta americana. J. Insect Physiol. 44, 645-651.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p389kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.