Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2011 | 60 | 1-2 | 33-42

Article title

Właściwości biologiczne izoprostanów

Content

Title variants

EN
Biological properties of isoprostanes.

Languages of publication

PL EN

Abstracts

PL
Peroksydacja nienasyconych kwasów tłuszczowych wchodzących w skład fosfolipidów zmienia ich aktywność biologiczną i wpływa na integralność błon komórkowych. Istnieją dwie drogi utleniania kwasów tłuszczowych - enzymatyczna i nieenzymatyczna. Wolne wielonienasycone kwasy tłuszczowe mogą być utleniane przy udziale licznych enzymów tworząc różne klasy mediatorów lipidowych: prostaglandyn, tromboksanów, prostacyklin, lipoksyn i hepoksylin. Nieenzymatyczna peroksydacja lipidów jest inicjowana przez wolne rodniki i prowadzi do powstania innych produktów peroksydacji, głównie izoprostanów, izotromboksanów, izolewuglandyn i izofuranów. Praca przedstawia obecny stan wiedzy dotyczący struktury i powstawania izoprostanów, końcowych produktów utleniania wielonienasyconego kwasu tłuszczowego - kwasu arachidonowego (kwas 5,8,11,14-eikozatetraenowy; ω-6). Opisuje też możliwość wykorzystania tych mediatorów lipidowych jako ważnych biomarkerów stresu oksydacyjnego w organizmie człowieka. Ponadto, w pracy przedstawiono aktywność biologiczną i znaczenie fizjologiczne izoprostanów, głównie ich działanie na naczynia krwionośne. Scharakteryzowano również właściwości fitoprostanów pochodzących z roślin i opisano ilościowe metody wykorzystywane do oznaczania izoprostanów w materiale biologicznym.
EN
Oxidation of polyunsaturated fatty acids changes the biological activity of phospholipids that are important for the integrity of cellular membranes. Two pathways of lipid peroxidation can occur: enzymatic and nonenzymatic. Free polyunsaturated fatty acids can be oxidized by multiple enzymes forming the reactive lipid mediators such as prostaglandins, thromboxanes, prostacyclins, lipoxins and hepoxylins. Nonenzymatic lipid peroxidation process initiated by free radicals leads to the formation of different products, mainly isoprostanes, isothromboxanes, isolevuglandins and isofuranes. The review summarized current knowledge on the structure and formation of final products of nonenzymatic oxidized polyunsaturated fatty acid (arachidonic acid, ω-6). Potential applications of its oxidized metabolites, especially isoprostanes as the most important biomarkers of oxidative stress in human diseases are determined. Biological activities and physiological role of isoprostanes, especially their effects on the vessel wall are described. The properties of phytoprostanes derived from plants are also characterized. The quantitative used for the estimation of isoprostanes are presented.

Keywords

Journal

Year

Volume

60

Issue

1-2

Pages

33-42

Physical description

Dates

published
2011

Contributors

  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki, Pomorska 141/3, 90-236 Łódź, Polska
  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki, Pomorska 141/3, 90-236 Łódź, Polska
author
  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki, Pomorska 141/3, 90-236 Łódź, Polska

References

  • Ahola T., Fellman V., Kjellmer I., Raivio K. O., Lapatto R., 2004. Plasma 8-isoprostane is increased in preterm infants who develop bronchopulmonary dysplasia or periventricular leukomalacia. Pediatr. Res. 56, 88-93.
  • Basu S., 2008. F2-isoprostanes in human health and diseases: from molecular mechanisms to clinical implications. Antioxid. Redox Signal. 10, 1405-1434.
  • Belik J., Gema E., González-Luis A., Perez-Vizcaino F., Villamor E., 2010. Isoprostanes in fetal and neonatal health and disease. Free Radic. Biol. Med. 48, 177-188.
  • Bernardo A., Greco A., Levi G., Minghetti L., 2003. Differential lipid peroxidation, Mn superoxide, and bcl-2 expression contribute to the maturation-dependent vulnerability of oligodendrocytes to oxidative stress. J. Neuropathol. Exp. Neurol. 62, 509-519.
  • Brooks J. D., Milne G. L., Yin H., Sanchez S. C., Porter N. A., Morrow J. D., 2008. Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J. Biol. Chem. 283, 12043-12055.
  • Comporti M., Signorini C., Arezzini B., Vecchio D., Monaco B., Gardi C., 2008. F2-isoprostanes are not just markers of oxidative stress. Free Radic. Biol. Med. 44, 248-250.
  • Cracowski J. L., Durand T., 2006. Cardiovascular pharmacology and physiology of the isoprostanes. Fundam. Clin. Pharmacol. 20, 417-427.
  • Durand T., Bultel-Pounnce V., Guy A., Berger S., Mueller M., Galano J. M., 2009. New bioactive axylipins formed by non-enzymatic free-radical-catalyzed pathway: the phytoprostanes. Lipids 10, 875-888.
  • Fam S. S., Morrow J. D., 2003. The isoprostanes: unique products of arachidonic acid oxidation. Curr. Med. Chem. 10, 1723-1733.
  • Fessel J. P., Roberts L. J. 2ND, 2005. Isofurans: novel products of lipid peroxidation that define the occurrence of oxidant injury in settings of elevated oxygen tension. Antiox. Redox Signal. 7, 202-211.
  • Fessel J. P., Porter N. A., Moore K. P., Sheller J. R., Roberts L. J., 2002. Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl. Acad. Sci. USA 99, 16713-16718.
  • Gao L., Yin H., Milne G. L., Porter N. A., Morrow J. D., 2006. Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J. Biol. Chem. 281, 14092-14099.
  • Gonzalez-Luis G., Perez-Vizcaino F., Garcia-Munoz F., De Mey J. G., Blanco C. E., Villamor E., 2005. Age-related differences in vasoconstrictor responses to isoprostanes in piglet pulmonary and mesenteric vascular smooth muscle. Pediatr. Res. 57, 845-852.
  • Greco A., Minghetti L., 2004. Isoprostanes as biomarkers and mediators of oxidative injury in infant and adult central nervous system diseases. Curr. Neurovasc. Res. 1, 341-342.
  • Hou X., Roberts L. J. 2ND, Taber D. F., Morrow J. D., Kanai K., Gobeil F. J., Beauchamp M. H., Bernier S. G., Lepage G., Varma D. R., Chemtob S., 2001. 2,3-dinor-5,6-dihydro-15-F2t-isoprostane: a bioactive prostanoid metabolite. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281, R391-R400.
  • Hou X., Roberts L. J., Gobeil J. F., Taber D., Kanai K., Abran D., Brault S., Checchin D., Sennlaub F., Lachapelle P., Varma D., Chemtob S., 2004. Isomer specific contractile effects of a series of synthetic F2-isoprostanes on retinal and cerebral microvasculature. Free Radic. Biol. Med. 6, 163-172.
  • Jahn U., Galano J. M., Durand T., 2008. Beyond prostaglandins-chemistry and biology of cyclic oxygenated metabolites formed by free-radical pathways from polyunsaturated fatty acids. Angew. Chem. Int. Ed. 47, 5894-5955.
  • Janssen L. J., 2008. Isoprostanes and lung vascular pathology. Am. J. Respir. Cell. Mol. Biol. 39, 383-389.
  • Janssen L. J., Premji M., Netherton S., Catalli A., Cox G., Keshavjee S., Crankshaw D. J., 2000. Excitatory and inhibitory actions of isoprostanes in human and canine airway smooth muscle. J. Pharmacol. Exp. Ther. 295, 506-511.
  • Jourdan K. B., Evans T. W., Curzen N. P., Mitchell J. A., 1997. Evidence for a dilator function of 8-iso prostaglandin F2α in rat pulmonary artery. Br. J. Pharmacol. 120, 1280-1285.
  • Kumar A., Kingdon E., Norman J., 2005. The isoprostane 8-iso-PGF2α suppresses monocyte adhesion to human microvascular endothelial cells via two independent mechanisms. FASEB J. 19, 443-445.
  • Lawson J. A., Rokach J., Fitzgerald G. A., 1999. Isoprostanes: formation, analysis and use as indices of lipid peroxidation in vivo. J. Biol. Chem. 274, 24441-24444.
  • Liu W., Morrow J. D., Yin H., 2009. Quantification of F2-isoprostanes as a reliable index of oxidative stress in vivo using gas chromatography-mass spectrometry (GC-MS) method. Free Radic. Biol. Med. 47, 1101-1107.
  • Loeffler C., Bergers K., Guy A., Durand T., Bringnam G., Dreyer M., Rad U., Durner J., Mueller M. J., 2005. B-1 Phytoprostanes tigger plant defense and detoxification responses. Plant Physiol. 137, 328-331.
  • Milne G. L., Musiek E. S., Morrow J. D., 2005. F2-Isoprostanes an markers of oxidative stress in vivo. Biomarkers 1, S10-S23.
  • Milne G. L., Yin H., Brooks J. D., Sanchez S., Jackson R. L., Morrow J. D., 2007. Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol. 433, 113-126.
  • Montuschi P., Barnes P., Roberts J., 2004. Isoprostanes: markers and mediators of oxidative stress. Foseb J. 18, 1792-1796.
  • Montuschi P., Barnes P., Roberts L. J., 2007. Insights into oxidative stress: the isoprostanes. Curr. Med. Chemistry 14, 703-711.
  • Morrow J. D., Hill K. E., Burk R. F., Nammour T. M., Badr K. F., Roberts L. J. 2ND, 1990. A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalysed mechanism. Proc. Natl. Acad. Sci. USA 87, 9383-9387.
  • Morrow J. D., Awad J. A., Boss H. J., Blair I. A., Roberts L. J., 1992. Noncyclooxygenase-derived prostanoids (F2-isoprostanes) are formed in situ on phospholipids. Proc. Natl. Acad. Sci. USA 89, 10721-10725.
  • Morrow J. D., Minton T. A., Mukundan C. R., Campbell M. D., Zackert W. E., Daniel V. C., Badr K. F., Blair I. A., Roberts L. J., 1994. Free radical-induced generation of isoprostanes in vivo. Evidence for the formation of D-ring and E-ring isoprostanes. J. Biol. Chem. 6, 4317-4326.
  • Musiek E. S., Milne G. L., Morrow J. D., 2005. Recent advances in the biochemistry and clinical relevance of the isoprostane pathway. Lipids 40, 987-994.
  • Piłacik B., Wrońska-Nofer T., Wąsowicz W., 2002. F2-Isoprostanes biomarkers of lipid peroxidation: the utility in evaluation of oxidative stress induced by toxic agents. Int. J. Occupat. Med. Environ. Health 15, 21-24.
  • Pryor W. A., Godber S. S., 1991. Oxidative stress status: an introduction. Free Radic. Biol. Med. 10, 173.
  • Roberts L. J., Fessel J. P., 2004. The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Chem. Phys. Lipids 128, 173-186.
  • Roberts L. J., Morrow J. D., 2000. Measurement of F2-isoprostanes as an index of oxidative stress in vivo. Free Radic. Biol. Med. 28, 505-513.
  • Sametz W., Hummer K., Butter M., Wintersteiger R., Juan H., 2000. Formation of 8- iso PGF(2α) and thromboxane A(2) by stimulation with several activators of phospholipase A(2) in the isolated human umbilical vein. Br. J. Pharmacol. 131, 145-51.
  • Schwedhelm E., Benndorf R. A., Böger R. H., Tsikas D., 2007. Mass spectrometric analysis of F2-Isoprostanes: markers and mediators in human disease. Curr. Pharmaceut. Anal. 3, 40-42.
  • Thoma I., Loeffler C., Sinha A.K., Gupta M., Krischke M., Steffan B., Roitsch T., Mueller M.J., 2003. Cyclopentenone isoprostanes induced by reactive oxygen species tigger defense gene activation and phytoalexin accumulation in plants. Plant J. 34, 363-364.
  • Tokarz A., Jelińska M., Ozga A., 2004. Izoprostany - nowe biomarkery lipidowej peroksydacji in vivo. Biul. Wydz. Farm. AMW 2, 1-6.
  • Yin H., Brooks J. D., Gao L., Porter N. A., Morrow J. D., 2007. Identification of novel autoxidation products of the omega-3 fatty acid eicosapentaenoic acid in vitro and in vivo. J. Biol. Chem. 282, 29890-29891.
  • Zhang Y., Tazzeo T., Hirota S., Janssen L. J., 2003. Vasodilatory and electrophysiological actions of 8-iso-prostaglandin E2 in porcine coronary artery. J. Pharmacol. Exp. Ther. 305, 1054-1060.
  • Zhang Y., Pertens E., Janssen L. J., 2005. 8-isoprostaglandin E(2) activates Ca(2+)-dependent K(+) current via cyclic AMP signaling pathway in murine renal artery. Eur. J. Pharmacol. 520, 22-28.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv60p33kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.