PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 3-4 | 245-259
Article title

Monitoring volcanoes - a review

Authors
Content
Title variants
PL
Monitoring Wulkanów
Languages of publication
EN PL
Abstracts
EN
Minimising risk in volcanic regions involves a number of inter-related studies. First is the collection of historical data on previous eruptions, followed by detailed mapping around the volcano. The resulting volcanic hazard map can be used during volcanic crises to minimise casualties. The range of tools currently deployed on volcanoes includes seismometers, a range of gas monitoring equipment, ground deformation equipment including differential GPS, borehole strainmeters, thermal imaging cameras, micro-gravimeters, magnetometers, laser scanners, radar scanners and magnetotelluric equipment to create subvolcanic images based on electrical conductivity. Satellites are also becoming more important, and new techniques involving solid state sensors may have a significant role to play in the future. Case studies confirm the usefulness of each of these techniques, although even in well-monitored volcanoes some eruptions take place without detectable precursors. To minimise the possibility of unexpected eruptions in the future will involve both increased instrumentation and the application of methodologies such as advanced neural networks and expert solicitation.
PL
Podczas ostatnich 300 lat ponad 250 tys. ludzi zginęło w wyniku erupcji wulkanicznych. Największe tragedie miały miejsce tam gdzie nie prowadzono monitoringu zachowania się wulkanów (El Chicon, Meksyk) lub nie przestrzegano zasad ewakuacji ludności (Nevado del Ruiz, Kolumbia). Z drugiej strony ścisłe przestrzeganie zasad i wyciąganie wniosków z danych monitoringu uratowały setki tysięcy ludzi przed zagładą w gęsto zaludnionych regionach świata (Pinatubo, Filipiny). Ograniczenie ryzyka związanego z przebywaniem ludzi w obszarach zagrożonych bezpośrednim oddziaływaniem wulkanów wymaga wielowątkowych badań. Pierwszym krokiem jest zebranie informacji dotyczących historycznych zapisów i relacji o wcześniejszych erupcjach. Opracowana na tej podstawie mapa potencjalnych zagrożeń może być bardzo pomocą podczas kryzysowej sytuacji. Pozwala ona zorientować się w rozmiarach jak i typie erupcji jaka może mieć miejsce. Szeroki wachlarz narzędzi do monitorowania zachowania się wulkanów obejmuje: sejsmometry, urządzenia do badania gazów wulkanicznych, deformacji gruntu, w tym precyzyjne przyrządy GPS, kamery termowizyjne, mikro-grawimetry, magnetometry, skanery laserowe, urządzenia do pomiarów magneto-tellurycznych (urządzenia do tworzenia obrazów wnętrza wulkanu na podstawie badań zmian własności elektrycznych i magnetycznych skał). Ważną rolę we współczesnym monitoringu odgrywają satelity jak również zastosowanie nowoczesnych metodologii, takich jak sieci neuronowe czy burze mózgów ekspertów od monitoringu (realizowane z użyciem najnowszych osiągnięć telekomunikacji i łączności). Jednak w praktyce najważniejsze okazuje się szybkie i precyzyjne przekazanie uzyskanych wniosków z pomiarów zagrożonym ludziom. Od szybkości i precyzji tych informacji zależą istnienia tysięcy ludzi. Pomimo dużej nieprzewidywalności zjawisk geologicznych dzięki dokładnemu monitoringowi możliwe jest w wielu przypadkach z dużą dozą prawdopodobieństwa określenie momentu i zasięgu mających nastąpić erupcji wulkanicznych. Gromadzenie nowych danych i doświadczeń w dziedzinie monitoringu to najskuteczniejsza obrona przed nieokiełznaną naturą pozwalająca coraz precyzyjniej określać zagrożenia dla ok. 10% populacji ludności świata, tylu bowiem ludzi znajduje się w "strefie rażenia" aktywnych wulkanów.
Keywords
Journal
Year
Volume
60
Issue
3-4
Pages
245-259
Physical description
Dates
published
2011
Contributors
  • Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, U.K.
References
  • Agustsson K., Steffansson R., Linde A. T., Einarsson P., Sacks I. S., Gudmundsson G. B., Thorjarndottir B., 2000. Successful prediction and warning of the 2000 eruption of Hekla based on seismicity and strain changes. EOS Trans. AGU U81, F1337.
  • Aloisi M., Bonaccorso A., Cannavò F., Gambino S., Mattia M., Puglisi G., Boschi E., 2009. A new dike intrusion style for the Mount Etna May 2008 eruption modelled through continuous tilt and GPS data. Terra Nova 21, 316-321. doi:10.1111/j.1365-3121.2009.00889.x.
  • Aspinall W. P., 2006. Structured elicitation of expert judgment for probabilistic hazard and risk assessment in volcanic eruptions. [In] Statistics in Volcanology. Mader H. M., Coles S. G., Connor C. B., Connor L. J. (eds). Special Publications of IAVCEI 1, 15-30. Geological Society, London, for IAVCEI, ISBN: 9781862392083.
  • Ball M., Pinkerton H., Harris A. J. L., 2008. Surface cooling, advection and the development of different surface textures on active lavas on Kilauea, Hawaii. J. Volcanol. Geotherm. Res. 173, 148-156.
  • Bonaccorso A., Campisi O., Falzone G., Gambino S., 2004. Continuous tilt monitoring: Lesson learned from 20 years experience at Mt. Etna. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320.
  • Bonaccorso A., Bonforte A., Guglielmino F., Palano M., Puglisi G., 2006. Composite ground deformation pattern forerunning the 2004-2005 Mount Etna eruption. J. Geophys. Res. 111, B12207. doi:10.1029/2005JB004206.
  • Bonaccorso A., Bonforte A., Calvari S., Del Negro C., Di Grazia G., Ganci G., Neri M., Vicari A., Boschi E., 2011. The initial phases of the 2008-2009 Mount Etna eruption: A multidisciplinary approach for hazard assessment. J. Geophys. Res. 116, B03203. doi:10.1029/2010JB007906.
  • Bonadonna, C., Connor C. B., Houghton B. F., Connor L., Byrne M., Laing A., Hincks T. K., 2005. Probabilistic modelling of tephra fall dispersal: Hazard assessment of a multiphase rhyolitic eruption at Tarawera, New Zealand. J. Geophys. Res. 110, B03203. doi:10.1029/2003JB002896.
  • Bruno N. T., Caltabiano T., Giammanco S., Romano R., 2001. Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma. J. Volcanol. Geotherm. Res. 110, 137-153. doi:10.1016/S0377-0273(01)00201-3.
  • Budetta G., Carbone D., Greco F., Rymer H., 2004. Microgravity Studies at Mount Etna (Italy) [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 221-240.
  • Burton M. R., Neri M., Andronico D., Branca S., Caltabiano T., Calvari S., Corsaro R. A., Del Carlo P., Lanzafame G., Lodato L., Miraglia L., Salerno G., Spampinato L., 2005. Etna 2004-2005: An archetype for geodynamically-controlled effusive eruptions. Geophys. Res. Lett. 32 9. doi:10.1029/2005GL022527.
  • Caltabiano T., Burton M., Giammanco S., Allard P., Bruno N., Mure F., Romano R., 2004. Volcanic gas emissions from the summit craters and flanks of Mt. Etna, 1987-2000. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 111-128.
  • Calvari S. and INGV-CT scientific staff, 2001. Multidisciplinary approach yields insight into Mt Etna 2001 eruption. EOS Trans. 82 , 653-656.
  • Carrivick J. L., Manville V., Mronin S. J., 2009. A fluid dynamics approach to modelling the 18th March 2007 lahar at Mt. Ruapehu, New Zealand. Bull. Volcanol. 71, 153-169. doi:10.1007/s00445-008-0213-2
  • Castellaro S., Mulargia F., 2007. Classification of pre-eruption and non-pre-eruption epochs at Mount Etna volcano by means of artificial neural networks. Geophys. Res. Lett. 34, L10311, 5 pp. doi:10.1029/2007GL029513.
  • Chouet B. A., 1988. Resonance of a fluid-driven crack: radiation properties and implications for the source of long-period events and harmonic tremor. J. Geophys. Res. 93, 4375-4400.
  • Chouet B. A., 1996. Long-period volcano seismicity: its sources and use in eruption forecasting. Nature 80, 309-316.
  • Chouet B. A., Page R. A., Stephens C. D., Lahr J. C., Power J. A., 1994. Precursor swarms of long-period events at Redoubt volcano (1989-1990), Alaska: their origin and use as a forecasting tool. J. Volcanol. Geotherm. Res. 62, 95-135.
  • Costa A., Macedonio G., Folch A., 2006. A three dimensional Eulerian model for transport and deposition of volcanic ashes. Earth Planet. Sci. Lett. 241, 634-647. doi:10.1016/j.epsl.2005.11.019.
  • De Silva S. L., Francis P. W., 1991. Volcanoes of the Central Andes. Springer-Verlag, Berlin.
  • Decker R. W., 1986. Forecasting Volcanic Eruptions. Ann. Rev. Earth Planet. Sci. 14, 267-291. doi:10.1146/annurev.ea.14.050186.001411.
  • Del Negro C., Napoli R., 2004. Magnetic field monitoring at Mt. Etna during the last 20 years. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 241-262.
  • Del Negro C., Fortuna L., Herault A., Vicari A., 2008. Simulations of the 2004 lava flow at Etna volcano by the MAGFLOW cellular automata model. Bull. Volcanol. 70, 805-812. doi:10.1007/s00445-007-0168-8.
  • Dzurisin D., Lisowski M., Wicks C. W., 2009. Continuing inflation at Three Sisters volcanic center central Oregon Cascade Range, USA, from GPS, leveling, and InSAR observations. Bull. Volcanol. 71, 1091-1110. doi:10.1007/s00445-009-0296-4.
  • Fornaciai A., Bisson M., Landi P., Mazzarini F., Pareschi M.T., 2010. A LiDAR survey of Stromboli volcano (Italy): Digital elevation model-based geomorphology and intensity analysis. Int. J. Remote Sensing 31. doi:10.1080/01431160903154416.
  • Gallardo L. A., Meju M. A., 2007. Joint two-dimensional cross-gradient imaging of magnetotelluric and seismic travel-time data for structural and lithological classification. Geophys. J. Int. 169, 1261-1272. doi:10.1111/j.1365-246X.2007.03366.x.
  • Harris A. J. L., Baloga S. M., 2009. Lava discharge rates from satellite measured heat flux. Geophys. Res. Lett. 36, L19302, doi:10.1029/2009GL039717.
  • Harris A. J. L., Flynn L. P., Keszthelyi L., Mouginis-Mark P. J., Rowland S. K., Esing J. A., 1998. Calculation of lava effusion rates from Landsat TM data. Bull. Volcanol. 60, 52-71.
  • Houlié N., Komorowski J. C., De Michele M., Kasereka M., Ciraba H., 2006. Early detection of eruptive dykes revealed by normalized difference vegetation index (NDVI) on Mt. Etna and Mt. Nyiragongo. Earth Planet. Sci. Lett. 246, 231-240. doi:10.1016/j.epsl.2006.03.039.
  • Hunter G., Pinkerton H., Airey R., Calvari S., 2003. The application of a long-range laser scanner for monitoring volcanic activity on Mount Etna. J. Volcanol. Geotherm. Res. 123, 203-210.
  • James M. R., Pinkerton H., Robson S. A., 2007. Image-based measurement of flux variation in distal regions of active lava flows. Geochem. Geophys. Geosyst. 8, Q03006. doi:10.1029/2006GC001448.
  • James M. R., Pinkerton H., Applegarth L. J., 2009. Detecting the development of active lava flow fields with a very-long-range terrestrial laser scanner and thermal imagery. Geophys. Res. Lett. 36, L22305. doi:10.1029/2009GL040701.
  • James M. R., Applegarth L. J., Pinkerton H., 2011. Lava channel roofing, overflows, breaches and switching: insights from the 2008-2009 eruption of Mt. Etna. Bull. Volcanol. (in press).
  • Lanza R., Meloni A., 2006. The earth's magnetism: an introduction for geologists. Science, 278 pages. ISBN 3540279792.
  • Linde A. T., Agustsson K., Sacks I. S., Stefansson R., 1993. Mechanism of the 1991 eruption of Hekla from continuous borehole strain monitoring. Nature 365 , 737-740.
  • Lockwood J. P., Hazlett R. W., 2010. Volcanoes: Global Perspectives. Wiley-Blackwell. ISBN: 978-1-4051-6250-0.
  • Macedonio G., Costa A., Longo A., 2005. A computer model for volcanic ash fallout and assessment of subsequent hazard. Comput. Geosci. 31, 837-845. doi:10.1016/j.cageo.2005.01.013.
  • Major J. J., Dzurisin D., Schilling S. P., Poland M. P., 2009. Monitoring lava-dome growth during the 2004-2008 Mount St. Helens, Washington, eruption using oblique terrestrial photography. Earth Planet.Sci. Lett. 286, 243-254.
  • Marzocchi W., Woo G., 2009 . Principles of volcanic risk metrics: Theory and the case study of Mount Vesuvius and Campi Flegrei, Italy . J. Geophys. Res. 114. doi: 10.1029/2008JB005908.
  • Marzocchi W., Sandri L., Selva J., 2010. BET VH: a probabilistic tool for long-term volcanic hazard assessment. Bull. Volcanol. doi 10.1007/s00445-010-0357-8.
  • Mauriello P., Patella D., Petrillo Z., Siniscalchi A., Iuliano T., Del Negro C., 2004. A geophysical study of the Mount Etna volcanic area. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 273-292.
  • Mcguire B., Kilburn C., Murray J. (eds), 1995. Monitoring Active Volcanoes: Strategies, Procedures, and Techniques. University College London Press.
  • Mcnutt S. R., 2000. Seismic monitoring. [In] Encyclopedia of Volcanoes. Houghton B., Rymer H., Stix J., Mcnutt S., Sigurdsson H. (eds). Academic Press, San Diego, 1095-1120.
  • Mcnutt S. R., 2005. Volcanic seismology. Ann. Rev. Earth Planet. Sci. 32, 461-491. doi: 10.1146/annurev.earth.33.092203.122459.
  • Mouginis-Mark P. J., Crisp J. A., Fink J. (eds), 2000. Remote Sensing of Active Volcanoes. AGU Monograph 116.
  • Murray J. B., Rymer H., Locke C. A., 2000. Ground deformation, gravity, and magnetics. [In] Encyclopedia of Volcanoes. Houghton B., Rymer H., Stix J., Mcnutt S., Sigurdsson H. (eds). Academic Press, San Diego, 1121-1140.
  • Napoli R., Currenti G., Del Negro C., Greco F., D. Scandura D., 2008. Volcanomagnetic evidence of the magmatic intrusion on 13th May 2008 Etna eruption. Geophys. Res. Lett. 35, L22301. doi:10.1029/2008GL035350.
  • Neri M., Acocella V., 2006. The 2004-2005 Etna eruption: implications for flank deformation and structural behavior of the volcano. J. Volcanol. Geotherm. Res. 158, 195-206.
  • Newhall C. G., Hoblitt R. P., 2002. Constructing event trees for volcanic crises. Bull. Volcanol. 64, 3-20. doi: 10.1007/s004450100173.
  • Patane D., E. Giampiccolo E., 2004. Faulting processes and earthquake source parameters at Mount Etna: State of the art and perspectives. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 167-190.
  • Peterson D. W., 1986. Volcanoes: Tectonic setting and impact on society. [In] Active Tectonics. National Academy Press, Studies in Geophysics, Washington, DC, 231-246.
  • Poland M., 2010. Learning to recognize volcanic non-eruptions. Geology 38, 287-288. doi:10.1130/focus032010.1
  • Puglisi G., Briole P., Bonforte A., 2004. Twelve years of ground deformation studies on Mt. Etna volcano based on GPS surveys. [In] Etna: Volcano Laboratory. Bonaccorso A., Calvari S., Coltelli M., Del Negro C., Falsaperla S. (eds). Geophys. Monogr. Ser. 143, 307-320. American Geophysical Union, Washington, DC, 321-341.
  • Rymer H., Williams-Jones G., 2000. Volcanic eruption prediction: Magma chamber physics from gravity and deformation measurements. Geophys. Res. Lett. 27, 2389-2392.
  • Rymer H., Cassidy J., Locke C. A., Murray J. B., 1995. Magma movements in Etna volcano associated with the major 1991-93 lava eruption: evidence from gravity and deformation. Bull. Volcanol. 57, 451-461.
  • Scollo S., Prestifilippo M., Spata G., D'Agostino M., Coltelli M., 2009. Monitoring and forecasting Etna volcanic plumes. Nat. Hazards Earth Syst. Sci. 9, 1573-1585. doi:10.5194/nhess-9-1573-2009.
  • Searcy C., Dean K., Stringer W., 1998. PUFF: A high resolution volcanic ash tracking model. J. Volcanol. Geotherm. Res. 80, 1-16. doi:10.1016/S0377-0273(97)00037-1.
  • Siebert L., Simkin T., Kimberly P., 2011. Volcanoes of the World. Third edition.
  • Smethurst L., James M. R., Pinkerton H., Tawn J. A., 2009. A statistical analysis of eruptive activity on Mount Etna, Sicily. Geophys. J. Int. 179, 655-666. doi: 10.1111/j.1365-246X.2009.04286.x
  • Sparks R. S. J., 2003. Forecasting volcanic eruptions. Earth Planet. Sci. Lett. 210, 1-15. doi:10.1016/S0012-821X(03)00124-9
  • Taisne B., Tait S., 2009. Eruption versus intrusion? Arrest of propagation of constant volume, buoyant, liquid-filled cracks in an elastic, brittle host. J. Geophys. Res. 114. doi: 10.1029/2009JB006297.
  • Vicari A., Herault A., Del Negro C., Coltelli M., Marsella M., Proietti C., 2007. Modelling of the 2001 lava flow at Etna volcano by a cellular automata approach. Environ. Model. Software 22, 1465-1471. doi:10.1016/j.envsoft.2006.10.005.
  • Vicari A., Ciraudo A., Del Negro C., Herault A., Fortuna L., 2009. Lava flow simulations using discharge rates from thermal infrared satellite imagery during the 2006 Etna eruption. Nat. Hazards 50, 539-550. doi:10.1007/s11069-008-9306-7.
  • Voight B., 1989. The 1985 Nevado del Ruiz volcano catastrophe: anatomy and retrospection. J. Volcanol. Geotherm. Res. 44, 349-386.
  • Voight B., 1996. The management of volcanic emergencies: Nevado del Ruiz. [In] Volcano Emergency Management. Scarpa R., Tilling R. (eds). UNESCO/Int. Assoc. Volcanology and Chemistry of Earth's Interior. Geneva, 719-769.
  • Wadge G., Macfarlane D. G., Odbert H. M., James M. R., Hole J. K., Ryan G., Bass V., De Angelis S., Pinkerton H., Robertson D. A., Loughlin S. C., 2008. Lava dome growth and mass wasting measured by a time series of ground-based radar and seismicity observations. J. Geophys. Res. B: Solid Earth 113, art. no. B08210.
  • Weng M. H., Mahapatra R., Wright N. G., Horsfall A. B., 2008. Role of oxygen in high temperature hydrogen sulfide detection using MISiC sensors. Meas. Sci. Technol. 19 024002. doi:10.1088/0957-0233/19/2/024002.
  • Werner-Allen G., Lorincz K., Welsh M., Marcillo O., Johnson J., Ruiz M., Lees J., 2006. Deploying a wireless sensor network on an active volcano. IEEE Internet Computing 10 , 18-25.
  • Wilson L., Head J. W., 1981. Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86, 2971-3001. doi: 10.1029/JB086iB04p02971 .
  • Wright N. G., Horsfall A. B., 2007 SiC sensors: a review. J. Phys. D: Appl. Phys. 40, 6345.
  • Wright R., Blake S., Harris A. J. L., Rothery D. A., 2001. A simple explanation for the space-based calculation of lava eruption rates. Earth Planet. Sci. Lett.192, 223-233. doi:10.1016/S0012-821X(01)00443-5.
  • Zhdanov M. S., Smith R. B., Gribenko A., Cuma M., Green M., 2011. Three-dimensional inversion of large-scale EarthScope magnetotelluric data based on the integral equation method: Geoelectrical imaging of the Yellowstone conductive mantle plume. Geophys. Res. Lett. 38, L08307. doi:10.1029/2011GL046953.
  • Zuccaro G., Cacace F., Spence R. J. S., 2008. Impact of explosive eruption scenarios at Vesuvius. J. Volcanol. Geotherm. Res. 178, 416-453.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p245kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.