PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 1-2 | 141-152
Article title

Udział mikro rna w rozwoju generatywnym roślin*

Content
Title variants
EN
The involvement of micro RNA in generative development of plants.
Languages of publication
PL EN
Abstracts
PL
Precyzyjna kontrola czasu zakwitania oraz rozwoju organów generatywnych jest niezbędna do sukcesu reprodukcyjnego roślin. Ostatnie lata wykazały, że jednym z czynników regulujących rozwój generatywny roślin są mikro RNA (miRNA). Mikro RNA to grupa cząsteczek długości około 21 nt o funkcjach regulatorowych. Zaangażowane są w proces wyciszania genów docelowych, polegający na inaktywacji ich ekspresji, u roślin zazwyczaj na poziomie transkrypcyjnym. W niniejszej pracy opisano udział pięciu miRNA: miR156, 159, 164, 167, i 172 w regulacji rozwoju generatywnego roślin. MiR156 poprzez promowanie degradacji transkryptów z rodziny SPL wpływa na przejście do generatywnej fazy rozwoju. MiR159 jest regulowanym przez gibereliny modulatorem aktywności białek GAMYB. MiR164 poprzez kontrolę obecności w poszczególnych komórkach mRNA genów CUC1 i CUC2 określa granice między elementami kwiatu. MiR167 i jego geny docelowe ARF6 oraz ARF8 związane są z rozwojem kwiatu. MiR172 jest komplementarny do mRNA genów z rodziny APETALA2 wpływających zarówno na proces indukcji kwitnienia jak i prawidłowe tworzenie kwiatu.
EN
Precise control of flowering time and generative organs development is essential for successful plants reproduction. Recent years showed that microRNA is one of the factors involved in regulation of generative development in plants. MicroRNA are 21 bp length regulatory molecules. They are involved in target genes silencing by inactivating they expression, mostly on transcriptional level in plants. The present article describes involvement of five miRNAs: miR156, 159, 164, 167 and 172 in generative development of plants. miR156 affects transition from vegetative to reproduction phase of development, by SPL transcripts degradation. miR159 works as a modulator of GAMYB protein activity. miR164 controls the presence of mRNA CUC1 and 2 genes in individual cells, hence defines the borders between flower elements. miR167 and its target genes ARF6 and ARF8 are involved in flower development. miR172 is complementary to the mRNA of genes from the APETALA2 family and affects on flower induction and development.
Keywords
Journal
Year
Volume
60
Issue
1-2
Pages
141-152
Physical description
Dates
published
2011
Contributors
  • Zakład Fizjologii i Biologii Molekularnej Roślin, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
author
  • Zakład Fizjologii i Biologii Molekularnej Roślin, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
  • Zakład Fizjologii i Biologii Molekularnej Roślin, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
author
  • Zakład Fizjologii i Biologii Molekularnej Roślin, Instytut Biologii Ogólnej i Molekularnej, Uniwersytet Mikołaja Kopernika, Gagarina 9, 87-100 Toruń, Polska
References
  • Achard P., Herr A., Baulcombe D. C., Herberd N. P., 2004. Modulation of floral development by a gibberellin-regulated microRNA. Development 131, 3357-3365.
  • Aukerman M. J., Sakai H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes. Plant Cell 15, 27-2741.
  • Bartel D. P., 2004. MicroRNAs: genomics, biogenesis, mechanism and function. Cell 116, 281-297.
  • Baumberger N., Baulcombe D. C., 2005. Arabidopsis ARGONAUTE1 is an RNA slicer that selectively recruits microRNAs and short interfering RNAs. Proc. Natl. Acad. Sci. USA 102, 11928-11933.
  • Bonnet E., Van de Peer Y., Rouzé P., 2006. The small RNA world of plants. New Phytol. 171, 451-68.
  • Chen X., 2004. A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303, 2022-2025.
  • Chen X., 2005. microRNA biogenesis and function in plants. FEBS Letters 579, 5923-5931.
  • Chuck G., O'Connor D., 2010. Small RNAs going the distance during plant development. Curr. Opin. Plant Biol. 13, 40-45.
  • Chuck G., Meeley R. B., Hake S., 1998. The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev. 12, 1145-1154.
  • Chuck G., Candela H., Hake S., 2009. Big impacts by small RNAs in plant development. Curr. Opin. Plant Biol. 12, 81-86.
  • Du T., Zamore P., 2005. microPrimer: the biogenesis and function of microRNA. Development 132, 4645-4652.
  • Fang Y., Spector D. L., 2007. Identification of nuclear dicing bodies containing proteins for microRNA biogenesis in living Arabidopsis plants. Curr. Biol. 17, 818-823.
  • Fleet C. M., Sun T. P., 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77-85.
  • Gocal G. F. W., Sheldon C. C., Gubler F., Moritz T., Bagnall D. J., Macmillan C. P., Li S. F., Parish R. W., Dennis E. S., Weigel D., King R. W., 2001. GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol. 127, 1682-1693.
  • Gray W., Estelle M., 2000. Function of the ubiqutin-proteasome pathway in auxin response. Trends Bioch. Sci. 25, 133-138.
  • Hagen G., Guilfoyle T., 2002. Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol. Biol. 49, 373-385.
  • Hayama R., Coupland G., 2004. The molecular basis of diversity in the photoperiodic flowering responses of Arabidopsis and Rice. Plant Physiol. 135, 677-684.
  • Imaizumi T., Kay S. A., 2006. Photoperiodic control of flowering: not only by coincidence. Trends Plant Sci. 11, 5-8.
  • Jack T., 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16, 1-17.
  • Jaeger K. E., Wigge P. A., 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 10-14.
  • Jones-Rhoades M., Bartel D., Bartel B., 2006. MicroRNAa and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19-53.
  • Jung J., Eo Y., Seo P., Reyes J. L., Yun J., Chua N., Park C. M., 2007. The GIGANTEA-regulated microRNA172 mediates photoperiodic flowering independent of CONSTANS in Arabidopsis. Plant Cell 9, 2736-2748.
  • Kidner C. A., Martienssen R. A., 2005. The developmental role of microRNA in plants. Curr. Biol. 8, 38-44.
  • Laufs P., Peaucelle A., Morin H., Traas J., 2004. MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311-4322.
  • Lauter N., Kampani A., Carlson S., Goebel M., Moose S. P., 2005. microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc. Natl. Acad. Sci. USA 102, 9412-9417.
  • Lee Y., Kim M., Han J., Yeom K., Lee S., Baek S., Kim V., 2004. MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23, 4051-4060.
  • Mallory A. C., Dugas D. V., Bartel D. P., Bartel B., 2004. MicroRNA regulation of NAC-domain targets is required for proper formation and separation of adjacent embryonic, vegetative, and floral organs. Curr. Biol. 14, 1035-1046.
  • Millar A. A., Gubler F., 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705-721.
  • Mlotshwa S., Yang Z., Kim Y., Chen X., 2006. Floral patterning defects induced by Arabidopsis APETALA2 and microRNA172 expression in Nicotiana benthamiana. Plant Mol. Biol. 61, 781-793.
  • Nagpal P., Ellis C. H., Weber H., Ploense S., Barkawi L., Guilfoyle T., Hagen G., Alonso J., Cohen J., Farmer E., Ecker J., Reed J., 2005. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132, 4107-4118.
  • Palatnik J. F., Allen E., Wu X., Schommer C., Schwab R., Carrington J. C., Weigel D., 2003. Control of leaf morphogenesis by miRNAs. Nature 425, 257-263.
  • Parcy F., 2005. Flowering: a time for integration. Int. J. Dev. Biol. 49, 585-593.
  • Quesada V., Dean C., Simpson G. A., 2005. Regulated RNA processing in the control of Arabidopsis flowering. Dev. Biol. 49, 773-780.
  • Reinhart B., Weinstein E., Rhoades M., Bartel B., Bartel D., 2002. MicroRNA in plants. Genes Dev. 16, 1616-1626.
  • Rhoades M., Reinhart B., Lim L., Burge C., Bartel B., Bartel D., 2002. Prediction of plant microRNA targets. Cell 110, 513-520.
  • Ronemus M., Vaughn M. W., Martienssen A., 2006. MicroRNA-Targeted and small interfering RNA-mediated mRNA degradation is regulated by Agronaute, Dicer, and RNA-dependent RNA polymerase in Arabidopsis. Plant Cell 18, 1559-1574.
  • Ru P., Xu L., Ma H., Huang H., 2006. Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res. 16, 457-465.
  • Schmid M., Uhlenhaut N. H., Godard F., Demar M., Bressman R., Weigel D., Lohman J. U., 2003. Dissection of floral induction pathways using global expression analysis. Development 1, 6001-6012.
  • Schwab R., Palatnik J., Riester M., Schommer C., Schmidt M., Weigel D., 2005. Specific effects of microRNAs on the plant transcriptome. Dev. Cell 8, 517-527.
  • Tkaczuk K., Obarska A., Bujnicki J., 2006. Molecular phylogenetics and comparative modeling of HEN1, a methyltransferase involved in plant microRNA biogenesis. BMC Evol. Biol. 6, 1471-2148.
  • Unver T., Namuth-Covert D. M., Budak H., 2009. Review of current methodological approaches for characterizing microRNAs in plants. Int. J. Plant Genomics 2009, ID 262463.
  • Vaucheret H., 2006. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev. 20, 759-771.
  • Voinnet O., 2009. Origin, biogenesis, and activity of plant microRNAs. Cell 136, 669-687.
  • Wojciechowski W., Kęsy J., Kopcewicz J., 2007. Florigen - legenda czy rzeczywistość? Post. Biol. Kom. 34, 31-49.
  • Wollmann H., Weigel D., 2010. Small RNAs in flower development. Eur. J. Cell Biol. 89, 250-257.
  • Wu G., Poethig R. S., 2006. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 133, 3539-3547.
  • Wu M. F., Tian Q., Reed J., 2006. Arabidopsis microRNA controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133, 4211-4218.
  • Yamaguchi A., Wu M. F., Yang L., Wu G., Poethig R. S., Wagner D., 2009. The microRNA-regulated SBP-Box transcription factor SPL3 is a direct upstream activator of LEAFY, FRUITFULL, and APETALA1. Dev. Cell. 2, 268-278.
  • Zhang B., Wang Q., Pan X., 2007. MicroRNAs and their regulatory roles in animals and plants. J. Cell Physiol. 210, 279-289.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p141kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.