PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 1-2 | 129-140
Article title

Rola giberelin w regulacji kwitnienia roślin.

Content
Title variants
EN
The role of gibberellins in the regulation of flowering in plants.
Languages of publication
PL EN
Abstracts
PL
Wyniki badań z zastosowaniem egzogennych giberelin wykazały, że hormony te wpływają w różny sposób na kwitnienie roślin dnia długiego i roślin dnia krótkiego. U Arabidopsis, jak i u innych roślin dnia długiego, gibereliny pełnią rolę stymulatorów kwitnienia. U roślin rozetowych oraz niektórych roślin dnia długiego egzogenne gibereliny są nawet w stanie zastąpić długi, indukcyjny fotoperiod. U wielu roślin dnia krótkiego, uprawianych w nieindukcyjnych warunkach krótkiej nocy, aplikacja gibereliny opóźnia bądź hamuje kwitnienie. Jednakże u Pharbitis nil (modelowej rośliny dnia krótkiego) uprawianej w warunkach podindukcyjnych, gibereliny stymulują tworzenie pąków kwiatowych. Zatem obserwowane efekty aplikacji giberelin u roślin krótkodniowych nie są jednoznaczne, zależą od gatunku rośliny oraz czasu i miejsca aplikacji hormonów. Ponieważ u niektórych roślin dnia długiego, jak np. u Lolium temulentum, indukcja fotoperiodyczna wpływając na geny 20-oksydazy giberelinowej, prowadzi do wzrostu poziomu giberelin w liściach, a następnie ich transportu do wierzchołka wzrostu pędu, gdzie następuje ewokacja i morfogeneza kwiatu, w pewnym momencie historii badań nad tym procesem gibereliny były uważane za sygnał kwitnieniowy u LDP. Zasadniczy postęp w zrozumieniu roli giberelin w regulacji rozwoju generatywnego przyniosły jednak badania molekularne. U A. thaliana gibereliny uruchamiają jeden z czterech szlaków indukcji kwitnienia. Szlak giberelinowy aktywuje ekspresję genów związanych z tworzeniem kwiatów na drodze bezpośredniej poprzez aktywację genu LFY i FT lub pośrednio poprzez pozytywną regulację genu SOC1. Wydaje się, że efekty te leżą u podstaw stymulującego wpływu giberelin na kwitnienie u roślin dnia długiego, a być może także u niektórych roślin dnia krótkiego. Prawidłowo funkcjonujący szlak przekazywania sygnału giberelinowego warunkuje jednocześnie wzrost elongacyjny pędu, który poprzedza kwitnienie u roślin rozetowych. Gibereliny biorą także udział w morfogenezie i dyferencjacji płci tworzących się kwiatów.
EN
The results of studies with exogenous gibberellins application showed that the hormones influence on flowering of long-day plants and short-day plants in different manner. In Arabidopsis, as well as other long-day plants, gibberellins stimulate flowering. In rose plants, and also some long-day plants, exogenous gibberellins are even able to replace long inductive photoperiod. In many short-day plants cultivated under non-inductive conditions of short night, gibberellin application delays or inhibit flowering. However, in Pharbitis nil (a model short-day plant) cultivated under sub-inductive conditions, gibberellins stimulate flower bud formation. Thus, the effects observed after gibberellins application in short-day plants are not unequivocal and depend on plant specious as well as time and place of hormones application. Because in some long-day plants, e. g. Lolium temulentum, photoperiodic induction, influencing on genes encoding gibberellic 20-oxidase, leads to the increase of gibberellins level in leaves, and next their transport to the apex where the evocation and flower morphogenesis take place, gibberellins were even historically considered as the flowering signal in LDP. Nevertheless, the most essential progress in understanding of gibberellins role in the regulation of generative development comes from molecular studies. In A. thaliana gibberellins trigger one of four flower induction pathways. The gibberellic pathway activates the expression of genes involved in flower formation both directly, through the activation of LFY and FT genes, and indirectly, through the positive regulation of SOC1 gene. It seems that the effects underlie the stimulating influence of gibberellins on flowering in long-day plants, and perhaps in some short-day plants, as well. In rose plants, correctly functioning gibberellin signal transduction pathway determine simultaneously stem elongation which is followed by flowering. Gibberellins are also involved in morphogenesis and sex differentiation of emerging flowers.
Keywords
Journal
Year
Volume
60
Issue
1-2
Pages
129-140
Physical description
Dates
published
2011
Contributors
  • Uniwersytet Mikołaja Kopernika, Wydział Biologii i Nauk o Ziemi, Katedra Fizjologii Roślin i Biotechnologii, Gagarina 9, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika, Wydział Biologii i Nauk o Ziemi, Katedra Fizjologii Roślin i Biotechnologii, Gagarina 9, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika, Wydział Biologii i Nauk o Ziemi, Katedra Fizjologii Roślin i Biotechnologii, Gagarina 9, 87-100 Toruń, Polska
  • Uniwersytet Mikołaja Kopernika, Wydział Biologii i Nauk o Ziemi, Katedra Fizjologii Roślin i Biotechnologii, Gagarina 9, 87-100 Toruń, Polska
author
  • Uniwersytet Mikołaja Kopernika, Wydział Biologii i Nauk o Ziemi, Katedra Fizjologii Roślin i Biotechnologii, Gagarina 9, 87-100 Toruń, Polska
References
  • Achard P., Herr A., Baulcombe D. C., Harberd N. P., 2004. Modulationn of floral development by a gibberellin-regulated microRNA. Development 131, 3357-3365.
  • Aukerman M. J., Sakai H., 2003. Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-Like target genes. Plant Cell 15, 2730-2741.
  • Bernier G., Kinet J. M., Sachs R. M., 1981. The physiology of flowering. CRP Press, Boca Raton, FI, 1033-1036.
  • Bolle C., 2004. The role of GRAS proteins in plant signal transduction and development. Planta 218, 683-692.
  • Cheng H., Qin L. J., Lee S. C., Fu X. D., Richards D. E., Cao D. N., Luo D., Harberd N. P., Peng J. R., 2004. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055-1064.
  • Chhun T., Aya K., Asano K., Yamamoto E., Morinaka Y., Watanabe M., Kitano H., Ashikari M., Matsuoka M., Ueguchi-Tanaka M., 2007. Gibberellin regulates pollen viability and pollen tube growth in rice. Plant Cell 19, 3876-3888.
  • Corbesier L., Vincent C., Jang S. H., Fornara F., Fan Q., Searle I., Giakountis A., Farrana S., Gissot L., Turnbull C., Coupland G., 2007. FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316, 1030-1033.
  • Daviere J. M., De Lucas M., Prat S., 2008. Transcriptional factor interaction: a central step in DELLA function. Curr. Opin. Genet. Dev. 18, 296-303.
  • De Jong A. W., Bruinsma J., 1974. Pistil development in Cleome flowers III. Effects of growth-regulating substances on flower buds of Cleome iberidella Welv. ex Oliv. grown in vitro. ZPflanzenphysiol. 73, 142-151.
  • Dill A., Thomas S. G., Hu J., Steber C. M., Sun T. P., 2004. The Arabidopsis F-box protein SLEEPY1 targets gibberellins signaling repressors for gibberellin-induced degradation. Plant Cell 16, 1392-1405.
  • Doerner P., 2003. Plant meristems: a merry-go-round of signals. Curr. Biol. 13, 368-374.
  • Eriksson S., Bohlenius H., Moritz T., Nilsson O., 2006. GA4 is the active gibberellin in the regulation of LEAFY transcription and Arabidopsis floral initiation. Plant Cell 18, 2172-2181.
  • Fleet C. M., Sun T. P., 2005. A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr. Opin. Plant Biol. 8, 77-85.
  • Galoch E., Czaplewska J., Kopcewicz J., 1995. Flower - promoting activity of gibberellin A3 in Pharbitis nil apex cultures exposed to various photoperiods. Acta Physiol. Plant. 17, 71-76.
  • Gomez-Mena C., De Folter S., Costa M. M. R., Angenent G. C., Sablowski R., 2005. Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132, 429-438.
  • Goto K., Meyerowitz E. M., 1994. Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8, 1548-1560.
  • Goto N., Pharis R. P., 1999. Role of gibberellins in the development of floral organs of the gibberellin-deficient mutant, ga1-1, of Arabidopsis thaliana. Can. J. Bot. 77, 944-954.
  • Griffiths J., Murase K., Rieu I., Zentella R., Zhang Z-L., Powers S. J., Gong F., Phillips A. L., Hedden P., Sunand T-P., Thomas S. G., 2006. Genetic characterization and functional analysis of the GID1 gibberellin receptors in Arabidopsis. Plant Cell 18, 3399-3414.
  • Hisamatsu T., King R. W., 2008. The nature of floral signals in Arabidopsis. II. Roles for FLOWERING LOCUS T (FT) and gibberellin. J. Exp. Bot. 59, 3821-3829.
  • Hu J. H., Mitchum M. G., Barnaby N., Ayele B. T., Ogawa M., Nam E., Lai W-Ch, Hanada A., Alonso J. M., Ecker J. R., Swain S. M., Yamaguchi S., Kamiya Y., Sun T-P., 2008. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320-336.
  • Imaizumi T., Kay S.A., 2006. Photoperiodic control of flowering: not only by coincidence. Plant Sci. 11, 550-558.
  • Itoh H., Ueguchi-Tanaka M., Sentoku N., Kitano H., Matsuoka M., Kobayashi M., 2001. Cloning and functional analysis of two gibberellin 3b-hydroxylase genes that are differently expressed during the growth of rice. Proc. Natl. Acad. Sci. USA, 98, 8909-8914.
  • Izhaki A., Borochov A., Zamski E., Weiss D., 2002. Gibberellin regulates post-microsporogenesis processes in petunia anthers. Physiol. Plant. 115, 442-447.
  • Jack T., 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16, 1-17.
  • Jacobsen S. E., Olszewski N. E., 1991. Characterization of the arrest in anther development associated with gibberellin deficiency of the gib-1 mutant of tomato. Plant Physiol. 97, 409-414.
  • Jasinski S., Piazza P., Craft J., Hay A., Woolley L., Rieu L., Phillips A., Hedden P., Tsiantis M., 2005. KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities. Curr. Biol. 15, 1560-1565.
  • Jaeger K. E., Wigge P. A., 2007. FT protein acts as a long-range signal in Arabidopsis. Curr. Biol. 17, 1050-1054.
  • Kaneko M., Itoh H., Inukai Y., Sakamoto T., Ueguchi-Tanaka M., Ashikari M., Matsuoka M., 2003. Where do gibberellin biosynthesis and gibberellin signaling occur in rice plants? Plant J. 35, 104-115.
  • King R. W., Ben-Tal Y., 2001. A florigenic effect of sucrose in Fuchsia hybrida is blocked by gibberellin-induced assimilate competition. Plant Physiol. 125, 488-496.
  • King R. W., Pharis R. P., Mander L. N., 1987. Gibberellins in relation to growth and flowering in Pharbitis nil. Plant Physiol. 84, 1126-1131.
  • King R., Moritz T., Evans L. T., Martin J., Andersen C. H., Blundell C., Kardailsky I., Chandler P. M., 2006. Regulation of flowering in the long-day grass Lolium temulentum by gibberellins and the FLOWERING LOCUS T gene. Plant Physiol. 141, 498-507.
  • King R. W., Mander L. N., Asp T., MacMillan C. P., Blundell C. A., Evans L. T., 2008. Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol. Plant 1, 295-307.
  • Kobayashi Y., Weigel D., 2007. Move on up, it's time for change: mobile signals controlling photoperiod-dependent flowering. Genes Dev. 21, 2371-2384.
  • Koornneef M., Van der Veen J. H., 1980. Induction and analysis of gibberellin sensitive mutants in Arabidopsis thaliana (L) Heynh. Theor. Appl. Genet. 58, 257-263.
  • Kopcewicz J., 2002. Rozwój generatywny. [W:] Fizjologia roślin. Kopcewicz J., Lewak S. (red.) Wydawnictwo Naukowe PWN, Warszawa, 520-556.
  • Kopcewicz J., 2009. Generatywny okres rozwoju. [W:] Fizjologia roślin. Wprowadzenie. Lewak S., Kopcewicz J. (red.) Wydawnictwo Naukowe PWN, Warszawa, 159.
  • Kulikowska-Gulewska H., Majewska M., Kopcewicz J., 2000. Gibberellins in the control of photoperiodic flower transition in Pharbitis nil. Physiol. Plant. 108, 202-207.
  • Lang A., 1956. Induction of flower formation in biennial Hyoscyamus by treatment with gibberellin. Naturwissenschaften 43, 284-285.
  • Lang A., 1957. The effect of gibberellin upon flower formation. Proc. Natl. Acad. Sci., USA 43, 709-717.
  • Lee D. J., Zeevaart J. A. D., 2007. Regulation of gibberellin 20-oxidase1 expression in spinach by photoperiod. Planta 226, 35-44.
  • Lin M. K., Belanger H., Lee Y. J. Lee Y.-J., Varkonyi-Gasic E., Taoka K-I., Miura E., Xoconostle-Cázares B., Gendler K., Jorgensen R. A., Phinney B., Lough T. J., Lucas W. J., 2007. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19, 1488-1506.
  • Liu C., Zhou J., Bracha-Drori K., Yalovsky S., Ito T., Yu H., 2007. Specification of Arabidopsis floral meristem identity by repression of flowering time genes. Development 134, 1901-1910.
  • Marciniak K., Turowski T., Wilmowicz E., Frankowski K., Kęsy J., Kopcewicz J., 2010. Ligazy ubikwitynowo-białkowe w szlakach sygnałowych auksyn, jasmonianów i giberelin. Post. Biol. Kom. 2, 409-432.
  • Mathieu J., Warthmann N., Kuttner F., Schmid M., 2007. Export of FT protein from phloem companion cells is sufficient for floral induction in Arabidopsis. Curr. Biol. 17, 1055-1060.
  • Millar A. A., Gubler F., 2005. The Arabidopsis GAMYB-like genes, MYB33 and MYB65, are microRNA-regulated genes that redundantly facilitate anther development. Plant Cell 17, 705-721.
  • Mitchum M. G., Yamaguchi S., Hanada A., Kuwahara A., Yoshioka Y., Kato T., Tabata S., Kamiya Y., Sun T. P., 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J. 45, 804-818.
  • Moon J., Suh S. S., Lee H., Choi K. R., Hong C. B., Paek N. C., Kim S. G., Lee I., 2003. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35, 613-623.
  • Murase K., Hirano Y., Sun T. P., Hakoshima T., 2008. Gibberellininduced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459-463.
  • Mutasa-Göttgens E., Hedden P., 2009. Gibberellin as a factor in floral regulatory networks. J. Exp. Bot. 60, 1979-1989.
  • Mutasa-Göttgens E., Qi A., Mathews A., Thomas S., Phillips A., Hedden P., 2008. Modification of gibberellin signalling (metabolism and signal transduction) in sugar beet: analysis of potential targets for crop improvement. Transgenic Res. doi: 10.1007/s11248-008-9211-6.
  • Nakajima M., Shimada A., Takashi Y., Kim Y. C., Park S. H., Ueguchi-Tanaka M., Suzuki H., Katoh E., Iuchi S., Kobayashi M., Maeda T., Matsuoka M., Yamaguchi I., 2006. Identification and characterization of Arabidopsis gibberellin receptors. Plant J. 46, 880-889.
  • Nester J. E., Zeevaart J. A. D., 1988. Flower development in normal tomato and a gibberellin-deficient (ga-2) mutant. Amer. J. Bot. 75, 45-55.
  • Ogawa Y., 1981. Stimulation of the Flowering of Pharbitis nil Chois. by Gibberellin A3: Time Dependent Action at the Apex. Plant Cell Physiol. 4, 675-681.
  • Pelaz S., Ditta G. S., Baumann E., Wisman E., Yanofsky M. F., 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405, 200-203.
  • Pharis R. P., Ross S. D., McMullan E.,1980. Promotion of flowering in the Pinaceae by gibberellins III. Seedlings of Douglas fir. Plant Physiol. 50:119-126.
  • Quesada V., Dean C., Simpson G. G., 2005. Regulated RNA processing in the control of Arabidopsis flowering. Int. J. Dev. Biol. 49, 773-780.
  • Rieu I., Ruiz-Rivero O., Fernandez-Garcia N., Griffiths J., Powers S. J., Gong F., Linhartova T., Eriksson S., Nilsson O., Thomas S.G., Phillips A. L., Hedden P., 2008a. The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J. 53, 488-504.
  • Rieu I., Eriksson S., Powers S. J., Gong F., Griffiths J., Woolley L., Benlloch R., Nilsson O., Thomas S. G., Hedden P., Phillips A. L., 2008b. Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20, 2420-2436.
  • Sablowski R., 2007. Flowering and determinacy in Arabidopsis. J. Exp. Bot. 58, 899-907.
  • Sakamoto T., Kobayashi M., Itoh H., Tagiri A., Kayano T., Tanaka H., Iwahori S., Matsuoka M., 2001. Expression of a gibberellin 2-oxidase gene around the shoot apex is related to phase transition in rice. Plant Physiol. 125, 1508-1516.
  • Sanders P. M., Bui A. Q., Weterings K., McIntire K. N., Hsu Y. C., Lee P. Y., Truong M. T., Beals T. P., Goldberg R. B., 1999. Anther developmental defects in Arabidopsis thaliana male-sterile mutants. Sex. Plant Reprod. 11, 297-322.
  • Shimada A., Ueguchi-Tanaka M., Nakatsu T., Nakajima M., Naoe Y., Ohmiya H., Kato H., Matsuoka M., 2008. Structural basis for gibberellin recognition by its receptor GID1. Nature 456, 520-523.
  • Silverstone A. L., Chang C. W., Krol E., Sun T. P., 1997. Developmental regulation of the gibberellin biosynthetic gene GA1 in Arabidopsis thaliana. Plant J. 12, 9-19.
  • Silverstone A. L., Sun T., 2000. Gibberellins and the Green Revolution. Trends Plant Sci. 5, 1-2.
  • Souer E., Rebocho A. B., Bliek M., Kusters E., de Bruin R. A., Koes R., 2008. Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of Petunia. Plant Cell 20, 2033-2048.
  • Takeno K., Tsuruta T., Maeda T., 1996. Gibberelins are not essential for photoperiodic flowering of Pharbitis nil. Physiol. Plant. 97, 397-401.
  • Tamaki S., Matsuo S., Wong H. L., Yokoi S., Shimamoto K., 2007. Hd3a protein is a mobile flowering signal in rice. Science 316, 1033-1036.
  • Tretyn A., Kopcewicz J., 1999a. Mechanizmy kwitnienia roślin. I. Uwarunkowania fizjologiczno-środowiskowe. Post. Biol. Kom. 26, 231-248.
  • Turck F., Fornara F., Coupland G., 2008. Regulation and identity of florigen: FLOWERING LOCUS T moves center stage. Ann. Rev. Plant Biol. 59, 573-594.
  • Ueguchi-Tanaka M., Ashikari M., Nakajima M., Itoh H., Katoh E., Kobayashi M., Chow T. Y., Hsing Y. I., Yamaguchi I., 2005. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellins. Nature 437, 693-8.
  • Vince-Prue D., Gressel J., 1985. Pharbitis nil. [W:] Handbook of flowering. Halevy A. H. (red.). CRC Press Inc., Boca Raton, Florida, 4, 47-81.
  • Wigge P. A., Kim M. C., Jaeger K. E., Busch W., Schmid M., Lohmann J. U., Weigel D., 2005. Integration of spatial and temporal information during floral induction in Arabidopsis. Science 309, 1056-1059.
  • Wijayanti L., Fujioka S., Kobayashi M., Sakurai A., 1996. Effect of uniconazole and gibberelin on the flowering of Pharbitis nil. Biosci. Biotech. Biochem. 60, 852-855.
  • Wilson R. N., Heckman J. W., Somerville C. R., 1992. Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100, 403-408.
  • Wojciechowski W., Kęsy J., Kopcewicz J,. 2007. Florigen - legenda czy rzeczywistość? Post. Biol. Kom. 34, 31-47.
  • Wu K. Q., Li L., Gage D. A., Zeevaart J. A. D., 1996. Molecular cloning and photoperiod-regulated expression of gibberellin 20-oxidase from the long-day plant spinach. Plant Physiol. 110, 547-554.
  • Yang Y.-Y., Yamaguchi I., Takeno-Wada K., Suzuki Y., Murofushi N., 1995. Metabolism and translocation of gibberellins in seedlings of Pharbitis nil. (I) Effect of photoperiod on stem elongation and endogenous gibberellins in cotyledons and their phloem exudates. Plant Cell Physiol. 2, 221-227.
  • Yamaguchi S., 2008. Gibberellin metabolism and its regulation. Ann. Rev. Plant Biol. 59, 225-251.
  • Yanofsky M. F., Ma H., Bowman J. L., Drews G. N., Feldmann K. A., Meyerowitz E. M., 1990 The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription actors. Nature 346, 35-39.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p129kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.