PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 1-2 | 113-128
Article title

Rola ros w fizjologii nasion

Content
Title variants
EN
Role of ROS in seed physiology.
Languages of publication
PL EN
Abstracts
PL
Reaktywne formy tlenu (ROS) pełnią w nasionach podwójną funkcję, są zarówno cząsteczkami sygnałowymi determinującymi kolejne etapy fizjologii nasion, jak też związkami toksycznymi, wywołującymi nieodwracalne zmiany strukturalne prowadzące do starzenia nasion. Zmiany stężenia ROS, szczególnie w osi zarodkowej, decydują o tym czy nasiona pozostaną w stanie spoczynku, czy też rozpocznie się proces kiełkowania, a następnie wzrost siewki. Zależność pomiędzy stężeniem ROS w nasionach, a realizacją kolejnych faz fizjologicznych opisuje model tzw. "okna oksydacyjnego". Zbyt niskie stężenie ROS w osi zarodkowej sprawia, że nasiona pozostają w stanie spoczynku, nie kiełkują, z kolei nadmiernie wysokie stężenie ROS - toksyczne dla komórek prowadzi do nieodwracalnych zmian, których wynikiem jest starzenie nasion. Rozpoczęcie kiełkowania nasion jest możliwe gdy stężenie ROS osiąga wartość optymalną dla tego procesu. Regulacyjna rola ROS związana jest z ich bezpośrednim i pośrednim działaniem na elementy strukturalne komórki. Ponadto modyfikacja metabolizmu nasion przez ROS zachodzi poprzez zmianę potencjału redoks i współdziałanie z reaktywnymi formami azotu (RNS), a także tworzenie innych cząsteczek sygnałowych np. reaktywnych elektrofilowych oksylipin. Istotną funkcją ROS jest modyfikacja białek np. przez tworzenie grup karbonylowych w konkretnych resztach aminokwasowych. Tak zmodyfikowane białka, tzw. białka utlenione, wytworzone w określonym organellum komórkowym biorą udział w kaskadzie specyficznego sygnału wywołanego przez ROS. Zmiany stężenia ROS podlegają precyzyjnej kontroli za pośrednictwem systemu odpowiednich enzymów oraz cząsteczkowych antyoksydantów komórkowych. Z uwagi na jego funkcję regulującą stężenie ROS w komórkach sugeruje się, aby dotychczasową nazwę "system antyoksydacyjny" zastąpić wyrażeniem "system modulujący stężenie ROS", jako lepiej obrazującym jego prawdziwą rolę. Niniejsza praca przedstawia najnowsze poglądy na temat roli ROS w regulacji rozwoju, kiełkowania i starzenia nasion.
EN
Reactive oxygen species (ROS) are involved in various aspects of seed physiology. They are generated during seed development, germination and ageing. Despite acting as toxic molecules ROS participate also in signal transduction pathways during different phases of seed development leading to modification in gene expression. In the present paper we explain the model of "oxidative window" describing dual role of ROS in seed physiology. ROS regulate seed metabolism via cellular redox status, interaction with reactive nitrogen species (RNS) and initiation of generation of reactive electrophyllic oxilipine species (RES). One of the key functions of ROS is oxidation of proteins. Oxyproteins generated in distinct compartment may act as ROS-mediated specific signal molecules. ROS content is precisely regulated by detoxifying enzymes and cellular antioxidant compounds responsible for ROS scavenging. Taking into account an informational function of ROS, it is suggested that expression "oxidative stress" should be replaced by the phrase "oxidative signal".
Keywords
Journal
Year
Volume
60
Issue
1-2
Pages
113-128
Physical description
Dates
published
2011
Contributors
  • Szkoła Główna Gospodarstwa Wiejskiego, Wydział Rolnictwa i Biologii, Katedra Fizjologii Roślin, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Szkoła Główna Gospodarstwa Wiejskiego, Wydział Rolnictwa i Biologii, Katedra Fizjologii Roślin, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Szkoła Główna Gospodarstwa Wiejskiego, Wydział Rolnictwa i Biologii, Katedra Fizjologii Roślin, Nowoursynowska 159, 02-776 Warszawa, Polska
References
  • Aalen R. B., 1999. Peroxiredoxin antioxidants in seed physiology. Seed Sci. Res. 9, 285-295.
  • Almagro L., Gómez Ros L.V., Belchi-Navarro S., Bru R., Barceló A. R., Pedrenño M. A., 2009. Class III peroxidases in plant defence reactions. J. Exp. Bot. 60, 377-390.
  • Anand P., Kwak Y., Simha R., Donaldson R. P., 2009. Hydrogen peroxide induced oxidation of peroxisomal malate synthase and catalase. Arch. Biochem. Biophys. 491, 25-31.
  • Asada K.,1992. Ascorbate peroxidase - a hydrogen peroxidase - scavenging enzyme in plants. Physiol. Plant. 85, 235-241.
  • Asada K.,1999. The water-water cycle in chloroplasts: scavenging of active oxygens and dissipation of excess photons. Ann. Rev. Plant Physiol. Plant Mol. Biol. 50, 601-639.
  • Azzi A., Stocker A., 2000. Vitamin E: non-antioxidant roles. Prog. Lipid Res. 39, 231-255.
  • Bailly C., El-Maarouf-Bouteau H., Corbineau F., 2008. From intracellular signaling networks to cell death: the dual role of reactive oxygen species in seed physiology. C. R. Biol. 331, 806-814.
  • Barba-Espin G., Diaz-Vivancos P., Clemente-Moreno M. J., Albacete A., Faize L., Faize M., Pèrez-Alfocea F., Hernández J. A., 2010. Interaction between peroxide and plant hormones during germination and the early growth of pea seedlings. Plant Cell Environ. 33, 981-994.
  • Bartosz G., 2004. Druga twarz tlenu. Wolne rodniki w przyrodzie. Wydawnictwo Naukowe PWN, Warszawa.
  • Bienert G. P., Møller A. L. B., Kristiansen K. A., Schulz A., Møller I. M., Schjoerring J. K., Jahn T. P., 2007. Specific aquaporins facilitate the diffusion of hydrogen peroxide across membranes. J. Biol. Chem. 282, 1183-1192.
  • Blokhina O., Virolainen E., Fagerstedt K. V., 2003. Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann. Bot. 91, 179-194.
  • Bogatek R., Gawrońska H., Oracz K., 2003, Involvement of oxidative stress and ABA in CN-mediated elimination of embryonic dormancy in apple [W:] The Biology of Seeds: Recent Research Advances. Nicolas G., Bradford K. J., Côme D., Pritchard H. W. (red.). CABI Publishing, 211-216.
  • Bolwell G. P., Bindschedler L. V., Blee K. A., Butt V. S., Davies D. R., Gardem S. L., Gerrish C., Minibayeva F., 2002 The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J. Exp. Bot. 53, 1367-1376.
  • Bowler C., Vav Camp W., Van Montagu M., Inzè D., 1994. Superoxide dysmutase in plants. Crit. Rev. Plant Sci. 13, 199-218.
  • Cairns N. G., Pasternak M., Wachter A., Cobbett C. S., Meyer A. J., 2006. Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141, 446-455.
  • Carol R. J., Dolan L., 2006. The role of reactive oxygen species in cell growth: lessons from root hairs. J. Exp. Bot. 57, 1829-1834.
  • Chang C. C. C., Ślezak I., Jorda L., Sotnikov A., Melzer M., Miszalski Z., Mullineaux P. M., Parker J. E., Karpińska B., Karpiński S., 2009 Arabidopsis chloroplastic glutathione peroxidases play a role in cross talk between photooxidative stress and immune responses. Plant Physiol. 150, 670-683.
  • Chen S.-X., Schopfer P., 1999. Hydroxyl-radical production in physiological reactions: a novel function of peroxidase. Eur. J. Biochem. 260, 726-735.
  • Côme D., Corbineau F., 1989. Some aspects of metabolic regulation of seed germination and dormancy. [W:] Recent advances in the development and germination of seeds. Taylorson R. B. (red.). New York, Plenum Press, 165-179.
  • Conklin P. L., Gatzek S., Wheeler G. L., Dowdle J., Raymond M. J., Rolinski S., Isupov M., Littlechild J. A., Smirnoff N., 2006 Arabidopsis thaliana VTC4 encodes L-galactose-1-P phosphatase, a plant ascorbic acid biosynthetic enzyme. J. Biol. Chem. 281, 15662-15670.
  • Corbineau F., Gay-Mathieu C., Vinel D., C Côme D., 2002. Decrease in sunflower (Helianthus annuus L.) seed viability caused by high temperature as related to energy metabolism, membrane damage and lipid composition. Physiol. Plant. 116, 489-496.
  • Corpas F. J., Barroso J. B., Del Río L. A., 2001. Peroxisomes as a source of reactive oxygen species and nitric oxide signal molecules in plant cells. Trends Plant Sci. 6, 145-150.
  • Dalle-Donne I., Carini M., Orioli M., Vistoli G., Regazzoni L., Colombo G., Rossi R., Milzani A., Aldini G., 2009. Protein carbonylation: 2,4-dinitrophenylhydrazine reacts with both aldehydes/ketones and sulfenic acids. Free Rad. Biol. Med. 46, 1411-1419.
  • Del Río L. A., Corpas F. J., Sandalio L. M., Palma J. M., Gómez M., Barroso J. B., 2002. Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes. J. Exp. Bot. 53, 1255-1272.
  • Desikan R., Mackerness S. A. H., Hancock J. T., Neill S. J., 2001. Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127, 159-172.
  • De Tullio M. C., Arrigoni O., 2003. The ascorbic acid system in seeds: To protect and to serve. Seed Sci. Res. 13, 249-260.
  • Doria E., Galleschi L., Calucci L., Pinzino C., Pilu R., Cassani E., Nielsen E., 2009. Phytic acid prevents oxidative stress in seeds: evidence from a maize (Zea mays L.) low phytic acid mutant. J. Exp. Bot. 60, 967-978.
  • Ederli L., Reale L., Madeo L., Ferranti F., Gehring C., Fornaciari M., Romano B., Pasqualini S., 2009. NO release by nitric oxide donors in vitro and in planta. Plant Physiol. Biochem. 47, 42-48.
  • Foreman J., Demidchik V., Bothwell J. H., Mylona P., Miedema H., Torres M. A., Linstead P., Costa S., BrownleeR C., Jones J. D. G., Davies J. M., Dolan L., 2003. Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422, 442-446.
  • Foyer C. H., Noctor G., 2003. Redox sensing and signaling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plant. 119, 355-364.
  • Foyer C. H., Noctor G., 2005. Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17, 1866-1875.
  • Frahry G., Schopfer P., 1998. Hydrogen peroxide production by roots and its stimulation by exogenous NADH. Physiol. Plant. 103, 395-404.
  • Gallardo K., Job C., Groot S. P. C., Puype M., Demol H., Vandekerckhove J., Job D., 2001. Proteomic analysis of Arabidopsis seed germination and priming. Plant Physiol. 126, 835-848.
  • Garnczarska M., Bednarski W., Jancelewicz M., 2009. Ability of lupine seeds to germinate and to tolerate desiccation as related to changes in free radical level and antioxidants in freshly harvested seeds. Plant Physiol. Biochem. 47, 56-62.
  • Gniazdowska A., Krasuska U., Czajkowska K., Bogatek R., 2010a. Nitric oxide, hydrogen cyanide and ethylene are required in the control of germination and undisturbed development of young apple seedlings. Plant Growth Regul. 61, 75-84.
  • Gniazdowska A., Krasuska U., Bogatek R., 2010b Dormancy removal in apple embryos by nitric oxide or cyanide involves modifications in ethylene biosynthetic pathway. Planta 232, 1397-1407.
  • Graham I. A., 2008. Seed storage oil mobilization. Annu. Rev. Plant Biol. 59, 115-142.
  • Hancock J. T., Desikan R., Neill S. J., 2001. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 29, 345-350.
  • Hancock J. T., Henson D., Nyirenda M., Desikan R., Harrison J., Lewis L., Hughes J., Neill S. J., 2005. Proteomic identification of glyceraldehydes 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol. Biochem. 43, 828-835.
  • Huang K., Lauridsen E., Clausen J., 1994. Selenium-containing peroxidases of germinating barley. Biol. Trace. Elem. Res. 46, 173-182.
  • Jalink H., Van Der Schoor R., Frandas A., Van Pijlen J.G., Bino R. J., 1999. Seed chlorophyll content as an indicator for seed maturity and seed quality. Acta Hort. 504, 219-227.
  • Janas K. M., Szafrańska K., Posmyk M., 2005. Melatonina w roślinach. Kosmos 54, 251-258.
  • Job C., Rajjou L., Lovigny Y., Belghazi M., Job D., 2005. Patterns of protein oxidation in Arabidopsis seeds and during germination. Plant Physiol. 138, 790-802.
  • Juszczuk I. M., Rychter A. M., 2003. Alternative oxidase in higher plants. Acta Bioch. Pol. 50, 1257-1271.
  • Kalemba E. M., Pukacka S., 2008. Changes in late embryogenesis abundant proteins and small heat shock protein during storage of beech (Fagus sylvatica L.) seeds. Environ. Exp. Bot. 63, 274-280.
  • Kalt-Torres W., Burke J. J., Anderson J. M., 1984. Chloroplast glutathione reductase: Purification and properties. Physiol. Plant. 61, 271-278.
  • Karyotou K., Donaldson R. P., 2005. Ascorbate peroxidase, a scavenger of hydrogen peroxide in glyoxysomal membranes. Arch. Biochem. Biophys. 434, 248-257.
  • Khan M. A., Ahmed M. Z., Hameed A., 2006. Effect of sea salt and L-ascorbic acid on the seed germination of halophytes. J. Arid Environ. 67, 535-540.
  • Krasuska U., 2009. Współdziałanie cyjanowodoru i tlenku azotu w przełamywaniu głębokiego spoczynku nasion jabłoni (Malus domestica Borkh). Rozprawa doktorska SGGW w Warszawie.
  • Kucera B., Cohn M. A., Leubner-Metzger G., 2005. Plant hormone interactions during seed dormancy release and germination. Seed Sci. Res. 15, 281-307.
  • Laohavisit A., Brown A. T., Cicuta P., Davies J. M., 2010. Annexins: components of the calcium and reactive oxygen signaling network. Plant Physiol. 152, 1824-1829.
  • Lee Y. P., Baek K.-H., Lee H.-S., Kwak S.-S., Bang J.-W., Kwon S.-Y., 2010. Tobacco seeds simultaneously over-expressing Cu/Zn superoxide dismutase and ascorbate peroxidase display enhanced seed longevity and germination rates under stress conditions. J. Exp. Bot. 61, 2499-2506.
  • Lindermayr C., Saalbach G., Durner J., 2005. Proteomic identification of S-nitrosylated proteins in Arabidopsis. Plant Physiol.137, 921-930.
  • Liu Y., Ye N., Liu R., Chen M., Zhang J., 2010. H2O2 mediates the regulation of ABA catabolism and GA biosynthesis in Arabidopsis seed dormancy and germination. J. Exp. Bot. 61, 2979-2990.
  • May M. J., Vernoux T., Leaver C., Van Montagu M., Inzè D., 1998. Glutathione homeostasis in plants: implications for environmental sensing and plant development. J. Exp. Bot. 49, 649-667.
  • Mori I. C., Schroeder J. I., 2004. Reactive Oxygen Species activation of plant Ca2+ channels. A signaling mechanism in polar growth, hormone transduction, stress signaling, and hypothetically mechanotransduction. Plant Physiol. 135, 702-708.
  • Møller I. M., Jensen P. E., Hansson A., 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481.
  • Møller I. M., Sweetlove L. J., 2010. ROS signaling - specificity is required. Trends Plant Sci. 15, 370-374.
  • Mueller M. J., Berger S., 2009. Reactive electrophilic oxylipins: Pattern recognition and signalling. Phytochemystry 70, 1511-1521.
  • Müller K., Linkies A., Vreeburg R. A. M., Fry S. C., Krieger-Liszkay A., Leubner-Metzger G., 2009. In vivo cell wall loosening by hydroxyl radicals during cress seed germination and elongation growth. Plant Physiol. 150, 1855-1865.
  • Naredo M. E. B., Juliano A. B., Lu B. R., De Guzman F., Jackson M. T., 1998. Responses to seed dormancy-breaking treatments in rice species (Oryza L.). Seed Sci. Tech. 26, 675-689.
  • Neill S. J., Desikan R., Hancock J. T., 2002. Hydrogen peroxide signalling. Curr. Opin. Plant Biol. 5, 388-395.
  • Nguyen A. T., Donaldson R. P., 2005. Metal-catalysed oxidation induces carbonylation of peroxisomal proteins and loss of enzymatic activities. Arch. Biochem. Biophys. 439, 25-31.
  • Noctor G., Gomez L., Vanacker H., Foyer C., 2002. Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53, 1283-1304.
  • Oracz K., El-Maarouf-Bouteau H., Farrant J. M., Cooper K., Belghazi M., Job C., Job D., Corbineau F., Bailly C., 2007. ROS production and protein oxidation as a novel mechanism for seed dormancy alleviation. Plant J. 50, 452-465.
  • Oracz K., El-Maarouf-Bouteau H., Kranner I., Bogatek R., Corbineau F., Bailly C., 2009. The mechanisms involved in seed dormancy alleviation by hydrogen cyanide unravel the role of reactive oxygen species as key factors of cellular signaling during germination. Plant Physiol. 150, 494-505.
  • Polidoros A., Mylona P., Pasentsis K., Scandalios J., Tsaftaris A., 2005. The maize alternative oxidase 1a (AOX1a) gene is regulated by signals related to oxidative stress. Redox Rep. 10, 71-78.
  • Posmyk M. M., Corbineau F., Vinel D., Bailly C., Cóme D., 2001. Osmoconditioning reduces physiological and biochemical damage and lipid composition. Physiol. Plant.111, 473-482.
  • Potters G., De Gara L., Asard H., Horemans N., 2002. Ascorbate and glutathione: guardians of the cell cycle, partners in crime? Plant Physiol. Biochem. 40, 537-548.
  • Pukacka S., Ratajczak E., 2005. Production and scavenging of reactive oxygen species in Fagus sylvatica seeds during storage at varied temperature and humidity. J. Plant Physiol. 162, 873-885.
  • Puntarulo S., Sanchez R., Boveris A., 1988. Hydrogen peroxide metabolism in soybean axes at the onset of germination. Plant Physiol. 86, 626-630.
  • Reinders J., Sickmann A., 2007 Modificomics: Posttranslational modifications beyond protein phosphorylation and glycosylation. Biomol. Eng. 24, 169-177.
  • Rentel M. C., Lecourieux D., Quaked F., Usher S. L., Petersen L., Okamoto H., Knight H., Peck S. C., Grierson C. S., Hirt H., Knight M. R., 2004. OXI1 kinase is necessary for oxidative burst-mediated signaling in Arabidopsis. Nature 427, 858-861.
  • Roach T., Beckett R. P., Minibayeva F. V., Colville L., Whitaker C., Chen H., Bailly C., Kranner I., 2010. Extracellular superoxide production, viability and redox poise in response to desiccation in recalcitrant Castanea sativa seeds. Plant Cell Environ. 33, 59-75.
  • Rucińska R., Waplak S, Gwoźdź E. A. 1999. Free radical formation and activity of antioxidant enzymes in lupine roots exposed to lead. Plant Physiol. Biochem. 37, 187-194.
  • Sallon S., Solowey E., Cohen Y., Korchinsky R., Egli M., Woodhatch I., Simchoni O., Kislev M., 2000. Germination, genetics, and growth of an ancient date seed. Science 320, 1464.
  • Sattler S. E., Gilliland L. U., Magallanes-Lundback M., Pollard M., Dellapennaa D., 2004. Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16, 1419-1432.
  • Scandalios J. G., Guan L., Polidoros A. N., 1997. Catalase in plants: gene structure, properties, regulation, and expression. [W:] Oxidative Stress and the Molecular Biology of Antioxidant Defenses. Scandalios J. G. (red.) Cold Spring Harbor Laboratory Press, New York, 353-406.
  • Schopfer P., 2001. Hydroxyl radical-induced cell-wall loosening in vitro and in vivo: implications for the control of elongation growth. Plant J. 28, 679-688.
  • Schopfer P., Plachy C., Frahry G., 2001. Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol. 125, 1591-1602.
  • Schopfer P., Liszkay A., Bechtold M., Frahry G., Wagner A., 2002. Evidence that hydroxyl radicals mediate auxin-induced extension growth. Planta 214, 821-828.
  • Sharma M. K., Buettner G. R., 1993. Interaction of vitamin C and vitamin E during free radical stress in plasma: an ESR study. Free Rad. Biol. Med. 14, 649-653.
  • Smirnoff N., 2000. Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr. Opin. Plant Biol. 3, 229-235.
  • Stasolla C., 2010. Glutathione redox regulation of in vitro embryogenesis. Plant Physiol. Biochem. 48, 319-327.
  • Tommasi F., Paciolla C., De Pinto M. C., De Gara L., 2002. A comparative study of glutathione and ascorbate metabolism during germination of Pinus pinea L. seeds. J. Exp. Bot. 52, 1647-1654.
  • Tommasi F., Paciolla C., De Pinto M. C., De Gara L., 2006. Effects of storage temperature on viability, germination and antioxidant metabolism in Ginko biloba L. seeds. Plant Physiol. Biochem. 44, 359-368.
  • Wang M., Van Der Meulen R. M., Visser K., Van Schaik H. P., Van Duijn B., De Boer A. H., 1998. Effects of dormancy-breaking chemicals on ABA levels in barley grain embryos. Seed Sci. Res. 8, 129-137.
  • Wojtaszek P., 1997. Oxidative burst: an early plant response to pathogen infection. Biochem J. 322, 681-692.
  • Wojtyla Ł., Garnczarska M., Ratajczak L., 2006. Rola reaktywnych form tlenu w procesie rozwoju i kiełkowania nasion. Post. Biol. Kom. 33, 543-553.
  • Yasukisa K., Fridovich I., 1983. Inhibition and reactivation of Mn-catalase. J. Biol. Chem. 258, 13646-13648.
  • Yoshimura K., Yabuta Y., Ishikawa T., Shigeoka S., 2000. Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol.123, 223-233.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p113kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.