PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2011 | 60 | 1-2 | 103-112
Article title

Chlamydomonas reinhardtii - modelowy organizm w badaniach cyklu komórkowego, chloroplastowego i mitochondrialnego

Content
Title variants
EN
Chlamydomonas reinhardtii — a model organism in research of cell, mitochondrial and chloroplast cycle.
Languages of publication
PL EN
Abstracts
PL
Względna łatwość hodowli, krótki cykl komórkowy, znana sekwencja genomu, a także duża ilość różnego rodzaju mutantów czynią z Chlamydomonas reinhardtii atrakcyjny organizm modelowy w badaniach dotyczących rozwoju i funkcjonowania komórki. Struktura genomu jądrowego i chloroplastowego C. reinhardtii wykazuje więcej cech wspólnych z genomami roślin wyższych niż prostych eukariontów. Genom mitochondrialny tego organizmu jest jednym z najmniejszych dotychczas poznanych u roślin i występuje w postaci liniowej, dwuniciowej cząsteczki. Zsekwencjonowanie gnomów Chlamydomonas reinhardtii oraz możliwość ich względnie łatwej transformacji stwarza dogodne podstawy do badania molekularnych uwarunkowań przebiegu cyklu komórkowego i zależności pomiędzy cyklem komórkowym, chloroplastowym i mitochondrialnym.
EN
The relative ease of culture, a short cell cycle, known whole genome sequence and a large number of different types of Chlamydomonas reinhardtii mutants, make this unicellular green alga a very attractive model organism for studies of the development and functioning of cell.The structure of nuclear and chloroplast genome of C. reinhardtii is more resembling genomes of vascularplants than simple eukaryotes. Mitochondrial genome of this organism is one of the smallest in plants and occurs as a linear, double-stranded molecule. Known whole genome sequence and the possibility of their transformation have allowed Chlamydomonas reinhardtii to become a highly valuable model for molecular approaches of cell cycle regulation and relationship between the cell, mitochondrial and chloroplast cycle.
Keywords
Journal
Year
Volume
60
Issue
1-2
Pages
103-112
Physical description
Dates
published
2011
Contributors
  • Katedra Fizjologii Roślin, Wydział Biologii, Uniwersytet Gdański, Al. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Katedra Fizjologii Roślin, Wydział Biologii, Uniwersytet Gdański, Al. Piłsudskiego 46, 81-378 Gdynia, Polska
  • Katedra Fizjologii Roślin, Wydział Biologii, Uniwersytet Gdański, Al. Piłsudskiego 46, 81-378 Gdynia, Polska
References
  • Adams S., Maple J., Møller S. G., 2008. Functional conservation of the MIN plastid division homologues of Chlamydomonas reinhardtii. Planta 227, 1199-1211.
  • Barkan A., Goldschmidt-Clermont M., 2000. Participation of nuclear genes in chloroplast gene expression. Biochimie 8, 559-572.
  • Beligni M. V., Yamaguchi K., Mayfield S. P., 2004. The translational apparatus of Chlamydomonas reinhardtii chloroplast. Photosynth. Res. 82, 315-325.
  • Birky C. W., Kato P., Lorens M., 1984. Cytological demonstration of chloroplast DNA behavior during gametogenesis and zygote formation in Chlamydomonas reinhardtii. Curr. Genet. 8, 1-7.
  • Bišová K., Krylov D. M., Umen J. G., 2005. Genome-wide annotation and expression profiling of cell cycle regulatory genes in Chlamydomonas reinhardtii. Plant Physiol. 137, 475-491.
  • Cardol P., Remacle C., 2009. The mitochondrial genome. [W:] The Chlamydomonas Sourcebook. Volume 2: Organellar and Metabolic Processes. Harris E. H. (red.). Elsevier, Oxford UK, 445-467.
  • Coleman A. W., 1982. The nuclear cell cycle in Chlamydomonas (Chlorophyceae). J. Phycol. 18, 192-195.
  • Craigie R. A., Cavalier-Smith T., 1982. Cell volume and the control of the Chlamydomonas cell cycle. J. Cell Sci. 54, 173-191.
  • Derelle E., Ferraz C., Rombauts S., Rouzé P., Worden A. Z., Robbens S., Partensky F., Degroeve S., Echeynié S., Cooke R., Saeys Y., Wuyts J., Jabbari K., Bowler C., Panaud O., Piégu B., Ball S. G., Ral J.-P., Bouget F.-Y., Piganeau G., De Baets B., Picard A., Delseny M., De-maille J., Van de Peer Y., Moreau H., 2006. Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc. Natl. Acad. Sci. USA 103, 11647-11652.
  • Donnan L., John P. C. L., 1983. Cell cycle control by timer and sizer in Chlamydomonas. Nature 304, 630-633.
  • Ehara T., Osafune T., Hase E., 1995. Behavior of mitochondria in synchronized cells of Chlamydomonas reinhardtii (Chlorophyta). J. Cell Sci. 108, 499-507.
  • Harper J. D. I., John P. C. L., 1986. Coordination of division events in the Chlamydomonas cell cycle. Protoplasma 131, 118-130.
  • Harris E. H., 2001. Chlamydomonas as a model organism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 52, 363-406.
  • Harris E. H., 2009a. The life of an acetate flagellate. [W:] The Chlamydomonas Sourcebook, Volume 1: Introduction to Chlamydomonas an Its Laboratory Use. Harris E. H. (red.). Elsevier, Oxford UK, 159-210.
  • Harris E. H., 2009b. The sexual cycle. [W:] The Chlamydomonas Sourcebook, Volume 1: Introduction to Chlamydomonas an Its Laboratory Use. Harris E. H. (red.). Elsevier, Oxford UK, 119-157.
  • Harris E. H., 2009c. Cell division. [W:] The Chlamydomonas Sourcebook, Volume 1: Introduction to Chlamydomonas an Its Laboratory Use. Harris E. H. (red.). Elsevier, Oxford UK, 65-87.
  • Hemschemeier A., Melis A., Happe T., 2009. Analytical approaches to photobiological hydrogen production in unicellular green alga. Photosynth. Res. 102, 523-540.
  • Higgs D. C., 2009. The chloroplast genome. [W:] The Chlamydomonas Sourcebook, Volume 2: Organellar and Metabolic Processes. Harris E. H. (red.). Elsevier, Oxford UK, 871-891.
  • Hiramatsu T., Nakamura S., Misumi O., Kuroiwa T., 2006. Morfological changes in mitochondrial and chloroplast nucleoids and mitochondria during the Chlamydomonas reinhardtii (Chlorophyceae) cell cycle. J. Phycol. 42, 1048-1058.
  • Hirt H., 1996. In and out of the plant cell cycle. Plant Mol. Biol. 31, 459-464.
  • Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M., Darzins A., 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639.
  • John P. C. L., 1984. Control of the cell division cycle in Chlamydomonas. Microbiol. Sci. 1, 96-101.
  • Kubo T., Kaida S., Abe J., Saito T., Fukuzawa H., Matsuda Y., 2009. The Chlamydomonas hatching enzyme, sporangin, is expressed in specific phases of the cell cycle and is localized to the flagella of daughter cells within the sporangial cell wall. Plant Cell Physiol. 50, 572-583.
  • Kuroiwa T., Ogawa K., Kawano S., 1981. The chloroplast nucleus: distribution, number, size and shape, and a model for the multiplication of the chloroplast genome during chloroplast development. Plant Cell Physiol. 22, 381-396.
  • Kuroiwa T., 1982. Mitochondrial nuclei. Int. Rev. Cytol. 75, 1-59.
  • Matsumura K., Yagi T., Yasuda K., 2003. Role of timer and sizer in regulation of Chlamydomonas cell cycle. Biochem. Biophys. Res. Com. 306, 1042-1049.
  • Matsuzaki M., Misumi O., Shin-I T., Maruyama S., Takahara M., Miyagishima S., Mori T., Nishida K., Yagisawa F., Nishida K., Yoshida Y., Nishimura Y., Nakao S., Kobayashi T., Momoyama Y., Higashiyama T., Minoda A., Sano M., Nomoto H., Oishi K., Hayashi H., Ohta F., Nishizaka S., Haga S., Miura S., Morishita T., Kabeya Y., Terasawa K., Suzuki Y., Ishii Y., Asakawa S., Takano H., Ohta N., Kuroiwa H., Tanaka K., Shimizu N., Sugano S., Sato N., Nozaki H., Ogasawara N., Kohara Y., Kuroiwa T., 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428, 653-657.
  • Maul J. E., Lilly J. W., Cui L., dePamphilis C. W., Miller W., Harris E. H., Stern D. B., 2002. The Chlamydomonas reinhardtii plastid chromosome: islands of genes in a sea of repeats. Plant Cell 14, 2659-2679.
  • Merchant S. S., Prochnik S. E., Vallon O., Harris E. H., Karpowicz S. J., Witman G. B., Terry A., Salamov A., Fritz-Laylin L. K., Maréchal-Drouard L., Marshall W. F., Qu L.-H., Nrlson D. R., Sanderfoot A. A., Spalding M. H., Kapitonov V. V., Ren Q., Ferris P., Lindquist E., Shapiro H., Lucas S. M., Grimwood J., Schmutz J., Chlamydomonas Annotation Team, J. G. I. Annotation Team, Grigoriev I. V., Rokhsar D. S., Grossman A. R., 2007. The Chlomydomonas genome reveals the evolution of key animal and plant function. Science 318, 245-251.
  • Mitchell D. R., 2000. Chlamydomonas flagella. J. Phycol. 36, 261-273.
  • Molnár A., Schwach F., Studholme D. J., Thuenemann E. C., Baulcombe D. C., 2007. miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii. Nature 447, 1126-1129.
  • Münzner P., Voigt J., 1992. Blue light regulation of cell division in Chlamydomonas reinhardtii. Plant Physiol. 99, 1370-1375.
  • Nakamura S., Itoh S., Kuroiwa T., 1986. Behavior of chloroplast nucleus during chloroplast development and degeneration in Chlamydomonas reinhardtii. Plant Cell Physiol. 27, 775-84.
  • Nemoto Y., Nagata T., Kuroiwa T., 1991. Studies on plastid-nuclei (nucleoids) in Nicotiana tabacum L. IV. Association of chloroplast-DNA with proteins at several specific sites in isolated chloroplast-nuclei. Plant Cell Physiol. 32, 131-141.
  • Nickelsen J., 2005. The green alga Chlamydomonas reinhardtii - a genetic model organism. [W:] Progress in Botany vol. 66. Esser K., Lüttge U. E., Beyschlag W., Murata J. (red.). Springer-Verlag, Berlin, Heidelberg, 68-89.
  • Odom O. W., Baek K.-H., Dani R. N., Herrin D. L., 2008. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome. Plant J. 53, 842-853.
  • Oldenhof H., Bišová K., van den Ende H., Zachleder V., 2004a. Effect of red and blue light on the timing of cyclin-dependent kinase activity and the timing of cell division in Chlamydomonas reinhardtii. Plant Physiol. Bochem. 42, 341-348.
  • Oldenhof H., Zachleder V., van den Ende H., 2004b. Blue light delays commitment to cell division in Chlamydomonas reinhardtii. Plant Biol. 6, 689-695.
  • Oldenhof H., Zachleder V., van den Ende H., 2006. Blue- and red-light regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 41, 313-320.
  • Oldenhof H., Zachleder V., van den Ende H., 2007. The cell cycle of Chlamydomonas reinhardtii: the role of the commitment point. Folia Microbiol. 52, 53-60.
  • Palenik B., Grimwood J., Aerts A., Rouzé P., Salamov A., Putnam N., Dupont C., Jorgensen R., Derelle E., Rombauts S., Zhou K., Otillar R., Merchant S. S., Podell S., Gaasterland T., Napoli C., Gendler K., Manuell A., Tai V., Vallon O., Piganeau G., Jancek S., Heijde M., Jabbari K., Bowler C., Lohr M., Robbens S., Werner G., Dubchak I., Pazour G. J., Ren Q., Paulsen I., Delwiche C., Schmutz J., Rokhsar D., Van de Peer Y., Moreau H., Grigoriev I. V., 2007. The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. PNAS 104, 7705-7710.
  • Pazour G. J., Agrin N., Walker B. L., Witman G. B., 2006. Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J. Med. Genet. 43, 62-73.
  • Pineau B., Mathieu C., Gérard-Hirne C., De Paepe R., Chétrit P., 2005. Targeting the NAD7 subunit to mitochondria restores a functional complex I and a wild type phenotype in the Nicotiana sylvestris CMS II mutant lacking nad7. J. Biol. Chem. 280, 25994-26001.
  • Pombert J.-F., Lemieux C., Turmel M., 2006. The complete chloroplast DNA sequence of the green alga Oltmannsiellopsis viridis reveals a distinctive quadripartite architecture in the chloroplast genome of early diverging ulvophytes. BMC Biology 4, 3.
  • Remacle C., Cardol P., Coosemans N., Gaisne M., Bonnefoy N., 2006. High-efficiency biolistic transformation of Chlamydomonas mitochondria can be used to insert mutations in complex I genes. PNAS 103, 4771-4776.
  • Rochaix J. D., 2007. The Role of nucleus- and chloroplast-encoded factors in the synthesis of the photosynthetic apparatus. [W:] The Structure and Function of Plastids. Wise R. R., Hoober J. K. (red.). Springer, Dordrecht, 145-165.
  • Sakai A., 2001. In vitro transcription/DNA synthesis using isolated organelle-nuclei: Application to the analysis of the mechanisms that regulate organelle genome function. J. Plant Res. 114, 199-211.
  • Sato S., Nakamura Y., Kaneko T., Asamizu E., Tabata S., 1999. Complete structure of the chloroplast genome of Arabidopsis thaliana. DNA Res. 6, 283-290.
  • Schroda M., 2006. RNA silencing in Chlamydomonas: mechanisms and tools. Curr. Genet. 49, 69-84.
  • Šetlík I., Zachleder V., 1984. The multiple fission cell reproductive patterns in algae. [W:] The Microbial Cell Cycle. Nurse P., Streiblová E. (red.). CRC Press, Boca Raton, Florida, 253-270.
  • Simpson C. L., Stern D. B., 2002. The treasure trove of algal chloroplast genomes. Surprises in architecture and gene content, and their functional implications. Plant Physiol. 129, 957-966.
  • Slaninová M., Nagyová B., Gálová E., Hendrychová J., Bišová K., Zachleder V., Vlček D., 2003. The alga Chlamydomonas reinhardtii UVS11 gene is responsible for cell division delay and temporal decrease in histone H1 kinase activity caused by UV irradiation. DNA Repair 2, 737-750.
  • Smith D. R., Lee R. W., 2008. Nucleotide diversity in the mitochondrial and nuclear compartments of Chlamydomonas reinhardtii: investigating the origins of genome architecture. BMC Evolutionary Biology 8, 156.
  • Spudich J. L., Sager R., 1980. Regulation of the Chlamydomonas cell cycle by light and dark. J. Cell Biol. 85, 136-145.
  • The Arabidopsis Genome Initiative, 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
  • Umen J. G., Goodenough U. W., 2001. Control of cell division by a retinoblastoma protein homolog in Chlamydomonas. Genes Dev. 15, 1652-1661.
  • Vahrenholz C., Riemen G., Pratje E., Dujon B., Michaelis G., 1993. Mitochondrial DNA of Chlamydomonas reinhardtii: the structure of the ends of the linear 15.8-kb genome suggests mechanisms for DNA replication. Curr. Genet. 24, 241-247.
  • Vernon D., Gutell R. R., Cannone J. J., Rumpf R. W., Birky C. W. J. R., 2001. Accelerated evolution of functional plastid rRNA and elongation factor genes due to reduced protein synthetic load after the loss of photosynthesis in the chlorophyte alga Polytoma. Mol. Biol. Evol. 18, 1810-1822.
  • Wakasugi T., Nagai T., Kapoor M., Sugita M., Ito M., Ito S., Tsudzuki J., Nakashima K., Tsudzuki T., Suzuki Y., Hamada A., Ohta T., Inamura A., Yoshinaga K., Sugiura M., 1997. Complete nucleotide sequence of the chloroplast genome from the green alga Chlorella vulgaris: The existence of genes possibly involved in chloroplast division. Proc. Natl. Acad. Sci. USA 94, 5967-5972.
  • Yandell M., Mungall C. J., Smith C., Prochnik S., Kaminker J., Hartzell G., Lewis S., Rubin G. M., 2006. Large-scale trends in the evolution of gene structures within 11 animal genomes. PLoS Comput. Biol. 2, e15.
  • Zachleder V., van den Ende H., 1992. Cell cycle events in the green alga Chlamydomonas eugametos and their control by environmental factors. J. Cell Sci. 102, 469-474.
  • Zachleder V., Bišová K., Vítová M., Kubín Š., Hendrychová J., 2002. Variety of cell cycle patterns in the alga Scenedesmus quadricauda (Chlorophyta) as revealed by application of illumination regimes and inhibitors. Eur. J. Phycol. 37, 361-371.
  • Zhao T., Li G., Mi S., Li S., Hannon G. J., Wang X.-J., Qi Y., 2007. A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev. 21, 1190-1203.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv60p103kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.