Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 3-4 | 589-598
Article title

Czy istnieje związek między bioróżnorodnością roślin i mikroorganizmów glebowych?

Title variants
Is there a link between biodiversity of plants and soil microorganisms?
Languages of publication
"Biodiversity" became one of the most popular ecological terms all over the world and is defined as "the variability among living organisms from all sources including [...] terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part: this includes diversity within species, between species and of ecosystems". Despite popularity of the term "biodiversity" and potential importance of diversity for ecosystem functioning the state of our knowledge on biodiversity is far from being satisfactory due to complexity of biological interactions and methodological problems. Soil microorganisms and plants are the most important contributors to the processes of matter turnover and energy flow, as plants are main producers of biomass and soil microorganisms are main decomposers of organic matter. Many authors noted a positive relationship between diversity of plant and microbial communities in both rhizosphere and bulk soil in various ecosystem types. However, the relationship may depend on the plant group of concern i.e. herbaceous plants, ferns, trees etc. On the other hand, plants possessing specific traits such as nitrogen-fixing legumes may particularly support microbial performance. Because of both positive and negative strong interactions between microorganisms and plants and due to the fact that decrease in plant or microbial diversity may potentially lead to deterioration of crucial ecosystem functions, understanding and protection of biological diversity is of primary importance. Further research is needed to gain a profound insight into interactions between plant and soil microbial communities in both natural or semi-natural or anthropogenically transformed ecosystems.
Physical description
  • Instytut Nauk o Środowisku, Uniwersytet Jagielloński, Gronostajowa 7, 30-387 Kraków, Polska
  • Instytut Botaniki PAN, Lubicz 46, 31-512 Kraków, Polska
  • Instytut Biologii, Uniwersytet Pedagogiczny im. KEN, Podbrzezie 3, 31-054 Kraków, Polska
  • Instytut Botaniki, Uniwersytet Jagielloński, Kopernika 27, 31-501 Kraków, Polska
  • Austrheim G., 2002. Plant diversity patterns in semi-natural grasslands along an elevation gradient in southern Norway. Plant Ecol. 161, 193-205.
  • Badura L., 2004. Czy znamy wszystkie uwarunkowania funkcji mikroorganizmów w ekosystemach lądowych? Kosmos 53, 373-379.
  • Bastias B. A., Anderson I. C., Xu Z., Cairney J. W. G., 2007. RNA- and DNA-based pro.ling of soil fungal communities in a native Australian eucalypt forest and adjacent Pinus elliotti plantation. Soil Biol. Biochem 39, 3108-3114.
  • Bell T., Newman J. A., Silverman B. W., Turner S. L., Lilley A. K., 2005. The contribution of species richness and composition to bacterial services. Nature 436, 1157-1160.
  • Bending G. D., Turner M. K., Jones J. E., 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biol. Biochem. 34, 1073-1082.
  • Bonkowski M., Roy J., 2005. Soil microbial diversity and soil functioning affect competition among grasses in experimental microcosms. Oecologia 143, 232-240.
  • Bonser S. P., Reader R. J., 1995. Plant competition and herbivory in relation to vegetation biomass. Ecology 76, 2176-2183.
  • Broughton L. C., Gross K. L., 2000. Patterns of diversity in plant and soil microbial communities along a productivity gradient in a Michigan old fields. Oecologia 125, 420-427.
  • Chabrerie O., Laval K., Puget P., Desaire S., Alard D., 2003. Relationship between plant and soil microbial communities along a successional gradient in a chalk grassland in north-western France. Appl. Soil Ecol. 24, 43-56.
  • Cohan F.M., 2002. What are bacterial species? Ann. Rew. Mic. 56, 457-487.
  • Connell J. H., 1978. Diversity in tropical rainforests and coral reefs. Science 199, 1302-1309.
  • Curtis T. P., Sloan W. T., Scannell J. W., 2002. From the Cover: Estimating prokaryotic diversity and its limits. Proc. Natl. Acad. Sci. USA 99, 10494-10499
  • Dahlberg A., 1997. Population ecology of Suillus variegarus in old Swedish Scots pine forest. Mycol. Res. 101, 47-54.
  • Dykhuizen D. E., 1998. Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73, 25-33.
  • Epelde L., Becerril J. M., Barrutia O., González-Oreja J. A., Garbisu C. 2010. Interactions between plant and rhizosphere microbial communities in a metalliferous soil. Environ. Pollut. 158, 1576-1583.
  • Finlay R. D., 2005. Mycorhizal symbiozis: myths, misconceptions, new perspectives and future research priorities. Mycologist 19, 90-96.
  • Garland J. L., Mills A. L., 1991. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization. Appl. Env. Mic. 57, 2351-2359.
  • Gevers D., Cohan F. M., Lawrence J. G., Spratt B. G., Coenye T., Feil E. J., Stackebrandt E., Van De Peer Y., Vandamme P., Thompson F. L., Swings J., 2005. Re-evaluating prokaryotic species. Nature Rev. Mic. 3, 733-739.
  • Giller P. S., O'Donovan G., 2002. Biodiversity and ecosystem function: do species matter? Biol. Env. 102B, 129-139.
  • Gough L., Grace J. B., Taylor K. L., 1994. The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70, 271-279.
  • Grayston S. J., Campbell C. D., Bardgett R. D., Mawdsley J. L., Clegg S. D., Ritz K., Griffiths B. S., Rodwell J. S., Edwards S. J., Davies W. J., Elston D. J., Millard P., 2004. Assessing shifts in microbial community structure across a range of grasslands of differing management inintensity using CLPP, PLFA and community DNA techniques. Appl. Soil Ecol. 25, 63-84.
  • Guo Q., Berry W. L., 1998. Species richness and biomass: dissection of the hump-shaped relationships. Ecology 79, 2555-2559.
  • Hawksworth D. L., 1991. The fungal dimension of biodiversity: magnitude, significance, and conservation. Mycol. Res. 95, 641-655.
  • Hooper D. U., Chapin Iii F. S., Ewel J. J., Hector A., Inchausti P., Lavorel S., Lawton J. H., Lodge D. M., Loreau M., Naeem S., Schmid S., Setälä H., Symstad A. J., Vandermeer J., Wardle D. A., 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3-35.
  • Higgins S. I., Richarson D. M., 1996. A review of models of alien plant spreading. Ecol. Modell. 87, 249-265.
  • Jelinski D. E., 1997. On genes and geography: a landscape perspective on genetic variation in natural plant population. Lands. Urban Plann. 39, 11-23.
  • Jones T. H., Bradford M. A., 2001. Assessing the functional implications of soil biodiversity in ecosystems. Ecol. Res. 16, 845-858.
  • Kahindi J. P., Woomer P., George T., Moreira F. D., Karanja N. K., Giller K. E., 1997. Agricultural intensification, soil biodiversity and ecosystem function in the tropics: The role of nitrogen-fixing bacteria. Appl. Soil Ecol. 6, 55-76.
  • Kirk J. L., Lee A. B., Hart M., Moutoglis P., Klironomos J. N., Lee H., Trevors J. T., 2004. Methods of studying soil microbial diversity. J. Mic. Meth. 58, 169-188.
  • Kisiel A., Skąpska A., Markiewicz W. T., Figlerowicz M., 2004. Mikromacierze DNA. Kosmos 53, 295-303.
  • Klimek B., Niklińska M., 2007. Zinc and copper toxicity to soil bacteria and fungi from zinc polluted and unpolluted soils - a comparative study with different types of Biolog plates. Bull. Env. Cont. Toxicol. 78, 102-107.
  • Kowalchuk G. A., De Souza F. A., Van Veen J. A., 2002. Community analysis of arbuscular mycorrhizal fungi associated with Ammophila arenaria in Dutch coastal sand dunes. Mol. Ecol. 11, 571-581.
  • Kozdrój J., Van Elsas J. D., 2001. Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approach. J. Mic. Meth. 43, 197-212.
  • Leyval C., Turnau K., Haselwandter K., 1997. Effect of heavy metal pollution on mycorrhizal colonization and fuction: physological, ecological and applied aspects. Mycorhiza 7, 139-153.
  • Lin M., Smalla K., Heuer H., Van Elsas J. D., 2000. Effect of an Alcaligenes faecalis inoculant strain on bacterial communities in flooded soil microcosms planted with rice seedlings. Appl. Soil Ecol. 15, 211-225.
  • Loreau M., Hector A., 2001. Partitioning selection and complementarity in biodiversity experiments & Erratum. Nature 412, 72-76; 413, 548.
  • Maki M., 2003. Population genetics of threatened wild plants in Japan. J. Plant Res. 116, 169-174.
  • Marrs R. H., 1993. Soil fertility and nature conservation in Europe: Theoretical considerations and practical management solutions. Adv. Ecol. Res. 24, 241- 300.
  • Mc Grady-Steed J., Harris P. M., Morin P. J., 1997. Diversity regulates ecosystem predictability. Nature 390, 162-165
  • Mitchell R. J., Hester A. J., Campbell C. D., Chapman S. J., Cameron C. M., Hewison R. L., Potts J. M., 2010. Is vegetation composition or soil chemistry the best predictor of the soil microbial community? Plant Soil (DOI 10.1007/s11104-010-0357-7).
  • Myklestad Å., Sætersdal M., 2004. The importance of traditional meadow management techniques for conservation of vascular plant species richness in Norway. Biol. Conserv. 118, 133-139.
  • Preston-Mafham J., Boddy L., Randerson P. F., 2002. Analysis of microbial community functional diversity using sole-carbon-source utilisation profiles - a critique. FEMS Mic. Ecol. 42, 1-14.
  • Ricotta C., 2003. Additive partition of parametric information and its associated β-diversity measure. Acta Biotheor. 51, 91-100.
  • Rodríguez-Loinaz G., Onaindia M., Amezaga I., Mijangos I., Garbisu C., 2008. Relationship between vegetation diversity and soil functional diversity in native mixed-oak forests. Soil Biol. Biochem. 40, 49-60.
  • Ruiz-Sánchez M., Aroca R., Muñoz Y., Polón R., Ruiz-Lozano J. M., 2010. The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J. Plant Physiol. 167, 862-869.
  • Saint-Etienne L., Paul S., Imbert D., Dulormne M., Muller F., Toribio A., Plenchette C., Bâ A. M., 2006. Arbuscular mycorrhizal soil infectivity in a stand of the wetland tree Pterocarpus officinalis along a salinity gradient. For. Ecol. Manag. 232, 86-89.
  • Schipper L. A., Lee W. G., 2004. Microbial biomass, respiration and diversity in ultramafic soils of West Dome, New Zealand. Plant Soil 262, 151-158.
  • Stefanowicz A. M., Niklińska M., Laskowski R., 2008. Metals affect soil bacterial and fungal functional diversity differently. Env. Toxicol. Chem. 27, 591-598.
  • Stephan A., Meyer A. H., Schmide B., 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. J. Ecol. 88, 988-998.
  • Stoyan H., De-Polli H., Böhm S., Robertson G. P., Paul E. A., 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil 222, 203-214.
  • Sylvia D. M., 1999. Mycorrhizal symbioses. [W:] Principles and Applications of Soil Microbiology. Sylvia D. M., Fuhrmann J. J., Hartel P. G., Zuberer D. A. (red.). Prentice Hall Inc., New York, 408-426.
  • Tilman D., 1982. Resource competition and community structure. Princeton University Press, Princeton, New Jersey, USA.
  • Tilman D., Knops J., Wedlin D., Reich P., Ritchie M., Sieman E., 1997. The influence of functional diversity and composition on ecosystem processes. Science 277, 1300-1302.
  • Torsvik V., Goksoyr J., Daae F. L., 1990. High Diversity in DNA of Soil Bacteria. Appl. Env. Mic. 56, 782-787.
  • Troumbis A.Y., Memptas D., 2000. Observational evidence that diversity may increase productivity in Mediterranean shrublands. Oecologia 125, 101-108.
  • Turnau K., Jurkiewicz A., Grzybowska B., 2002. Rola mikoryzy w bioremediacji terenów zanieczyszczonych. Kosmos 51, 185-194.
  • Turner J. R. G., 2004. Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic Apll. Ecol. 5, 435-448.
  • Wardle D. A., 2001. No observational evidence for diversity enhancing productivity in Mediterranean shrublands. Oecologia 129, 620-621.
  • Zak D. R., Groffman P. M., Christensen S., Pregitzer K. S., Tiedje J. M., 1990. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology 71, 651-656.
  • Zak D. R., Holmes W. H., White D. C., Peacock A. D., Tilman D., 2003. Plant diversity, soil microbial communities, and ecosystem function: are there any links? Ecology 84, 2042-2050.
  • Zak J. C., Willig M. R., Moorhead D. L., Wildmand H. G., 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol. Biochem. 26, 1101-1108.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.