PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2010 | 59 | 3-4 | 567-580
Article title

Sorgoleon - główny związek warunkujący potencjał allelopatyczny sorga (Sorghum spp.)

Content
Title variants
EN
Sorgoleone - the main allelopathic compound from sorghum
Languages of publication
PL EN
Abstracts
EN
This paper presents principles of sorghum (Sorghum spp.) allelopathy and its importance in agro- ecosystems. Sorghum is cereal grain plant of the family Poaceae and one of the most important crops in the world. Sorghum produces a large variety of secondary metabolites that determine its high allelopathic potential. Most of them are classified as hydrophilic phenolic compounds. Mature root hairs of sorghum exude oily droplets, containing hydrophobic sorgoleone and its lipid resorcinol analogue. Sorgoleone mode of action in plants involves inhibition in photosynthetic and mitochondrial electron transport chain. Allelopathic properties of sorghum are successfully used in suppressing weed growth in integrated pest management system as a cover crop, green manure, sorghum water extract or as residue in non-tillage farming. In future sorgoleone may be used also as alternative, ecological herbicide.
Keywords
Journal
Year
Volume
59
Issue
3-4
Pages
567-580
Physical description
Dates
published
2010
References
  • Ahmad A., Cheema Z. A., Ahmad R., 2000. Evaluation of sorgaab as natural weed inhibitor in maize. J. Anim. Plant Sci. 10, 141-146.
  • Alsaadawi I. S., Al-Ekeelie M. H. S., Al-Hamzawi M. K., 2007. Differential allelopathic potential of grain sorghum genotypes to weeds. Allelopathy J. 19, 153-160.
  • Anwar S., Shah W. A., Shafi M., Bakht J., Khan M. A., 2003. Efficiency of Sorgaab (Sorghum water extract) as a natural weed inhibitor in wheat (Triticum aestivum L.). Pakistan J. Weed Sci. Res. 9, 161-170.
  • Baerson S. R., Dayan F. E., Rimando A. M., Nanayakkara L. P. D., Liu C.-J., Schröder J., Fishbein M., Pan Z., Kagan I. A., Pratt L. H., Cordonnier-Pratt M. M., Duke S. O., 2008. A functional genomics investigation of allelochemical biosynthesis in Sorghum bicolor root hairs. J. Biol. Chem. 283, 3231-3247.
  • Ben-Hammouda M., Kremer R. J., Minor H. C., Sarwar M., 1995. A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J. Chem. Ecol. 21, 775-786.
  • Bhownik P. C., Indrjit, 2003. Challenges and opportunities in implementing allelopathy for natural weed management. Crop Prot. 22, 661-671.
  • Cheema Z. A., Khaliq A., 2000. Use of sorghum allelopathic properties to control weeds in irrigated wheat in semi arid region of Punjab. Agric. Ecosyst. Environ. 79, 105-112.
  • Cheema Z. Z., Asim A., Khaliq A., 2000. Sorghum allelopathy for weed control in cotton (Gossypium arboreum L.). Int. J. Agr. Biol. 2, 37-41.
  • Cheema Z. A., Farid M. S., Khalig A., 2003. Efficacy of concentrated sorgaab with low rates of atrazine for weed control in maize. J. Anim. Plant Sci.13, 48-51
  • Ciarka D., 2005. Rola allelopatii w ekosystemach rolniczych. Kurier 1, 10-12.
  • Czarnota M. A., Paul R. N., Dayan F. E., Nimbal H. I., Weston L. A., 2001. Mode of action, localization of production, chemical nature, and activity of sorgoleone: a potent PSII inhibitor in Sorghum spp. root exudates. Weed Tech. 15, 813-825.
  • Czarnota M. A., Paul R. N., Weston L. A., Duke S. O., 2003a. Anatomy of sorgoleone-secreting root hairs of Sorghum species. Int. J. Plant Sci.164, 861-866.
  • Czarnota M. A., Rimando A. M., Weston L. A., 2003b. Evolution of root exudates of seven sorghum accessions. J. Chem. Ecol. 29, 2073-2083.
  • Da Silva J. M., Da Silva A. B., Padua M., 2007. Modulated chlorophyll a fluorescence: a tool for teaching photosynthesis. J. Biol. Educ. 41, 178-183.
  • Dayan F. E., 2006. Factors modulating the levels of the allelochemical sorgoleone in Sorghum bicolor. Planta 224, 339-346.
  • Dayan F. E., Duke S. O., 2009. Biological activity of allelochemicals. [W:] Plant-derived Natural Products: Synthesis, Function, and Application. Osbourn A. E., Lanzotti V. (red.). Springer Science Bussines Media. New York, 361-385.
  • Dayan F. E., Kagan I. A., Rimando A. M., 2003. Elucidation of the biosynthetic pathway of the allelochemical sorgoleon using retrobiosynthetic NMR analysis. J. Biol. Chem. 278, 28607-28611.
  • Dayan F. E., Watson S. B., Nanayakkara D., 2007. Biosynthesis of lipid resocinols and benzoquinones in isolated secretory plant root hairs. J. Exp. Bot. 58, 1-10.
  • Dayan F. E., Howell J., Weidenhamer J. D., 2009. Dynamic root exudation of sorgoleone and its in planta mechanism of action. J. Ex. Bot. 60, 2107-2117.
  • Duke S.O., 2003. Weeding with transgenes. Trends Biotech. 21, 192-194.
  • Eihelling F. A., Leather G. R., 1988. Potentials for exploiting allelopathy to enhance crop production. J. Chem. Ecol. 14, 1829-1844.
  • Einhellig F. A., Rasmussen J. A., 1989. Prior cropping with grain sorghum inhibits weeds. J. Chem. Ecol. 15, 951-960.
  • Eihelling F. A., Rasmussen J. A., Hejl A. M., Souza I. F., 1993. Effects of root exudates sorgoleone on photosynthesis. J. Chem. Ecol. 19, 369-375.
  • Field B., Jordán F., Osbourn A., 2006. First encounters - development of defence-related natural products by plants. New Phytol. 172, 193-208.
  • Funnell-Harris D., L. Pedersen J. F., Marx D. B., 2008. Effect of sorghum seedlings, and previous crop, on soil fluorescent Pseudomonas spp. Plant Soil 311, 173-187.
  • Gattás-Hallak A. M., Chamma L., Souza D., Souza I. F., 1999. Effects of sorghum (Sorghum bicolor L.) root exudates on the cell cycle of the bean plant (Phaseoul vulgaris L.) root. Gen. Mol. Biol. 22, 95-99.
  • Gimsing L. A., Bælum J., Dayan F. E., Locke M. A., Sejerø L. H., Jacobsen C. S., 2009. Mineralization of the allelochemical sorgoleone in soil. Chemosphere 76, 1041-1047.
  • Gniazdowska A., 2005. Oddziaływania allelopatyczne - 'nowa broń' roślin inwazyjnych. Kosmos 54, 221-226.
  • Gniazdowska A., 2007. Biotechnologia szansą dla zastosowania allelopatii jako alternatywnej metody zwalczania chwastów. Biotechnologia 77, 42-53.
  • Gniazdowska A., 2008. Czy oddziaływania allelopatyczne to 'nowa broń' roślin inwazyjnych? Kontrowersje wokół badań dotyczących decydującej roli katechiny w inwazji Centaurea malucosa. Kosmos 57, 278-279.
  • Gniazdowska A., Oracz K., Bogatek R., 2004. Allelopatia - nowe interpretacje oddziaływań pomiędzy roślinami. Kosmos 53, 207-217.
  • Gonzalez V. M., Kazimir J., Nimbal C., Weston L. A., Cheniae G.M., 1997. Inhibition of a photosystem II electron transfer reaction by the natural product sorgoleone. J. Agr. Food Chem. 45, 1415-1421.
  • Hejl A. M., Koster K. L., 2004. The allelochemical sorgoleone inhibits root H+-ATPase and water uptake. J. Chem. Ecol. 30, 2181-2191.
  • Inderjit, Duke S. O., 2003. Ecophysiological aspects of allelopathy. Planta 217, 529-539.
  • Irshad A., Cheema Z. A., 2005. Comparative efficacy of sorghum allelopathic potential for controlling barnyardgrass in rice. Proceedings of the 4th World Congress on Allelopathy, Wagga Wagga, New South Wales, Australia. http://www.regional.org.au/au/allelopathy/2005/2/4/2220_irshada.htm
  • Jasicka-Misiak I., 2009. Allelopatyczne właściwości metabolitów wtórnych roślin uprawnych. Wiad. Chem. 63, 39-61.
  • Jezierska-Domaradzka A., 2007. Allelopatyczny potencjał roślin jako możliwość ograniczania zachwaszczenia upraw rolniczych. Studia i Raporty IUNG - PIB 8, 22-28.
  • Kaczmarek S., 2009. Wykorzystanie potencjału allelopatycznego roślin w wybranych uprawach rolniczych. Post. Ochr. Roślin 49, 1502-1511.
  • Khalig A., Cheema Z. A., Mukhtar M. A., Ahmad S. M., 1999. Evaluation of sorghum (Sorghum bicolor) water extract for weed control in soybean. Int. J. Agr. Biol. 1, 23-26.
  • Koperska M., 2007. Allelopatia w stosunkach między roślinami uprawnymi i chwastami. Przemysł Fitofarmaceutyczny w Świecie 4, 1-29.
  • Kim S. Y., De Datta R. P., Robles K. U., Kim S. C., Lee S. C., Shin D. H., 1993. Allelopathic effects of sorghum extract and residues on selected crops and weeds. Korean J. Weed Sci.14, 34-41.
  • Lehle F. R., Putman A. R., 1983. Allelopathic potential of sorghum (Sorghum bicolor): isolation of seed germination inhibitors. J. Chem. Ecol. 9, 1223-1234.
  • Leszczyńska D., Grabiński J., 2004. Kiełkowanie zbóż w układach mieszanych - aspekt allelopatyczny. Ann. UMCS 59, 1977-1984.
  • Lipińska H., 2006. Kiełkowanie nasion i wzrost siewek wybranych gatunków traw w warunkach oddziaływań blastokolin kiełkujących nasion traw. Acta Agrobot. 59, 253-262.
  • Lipińska H., Harkot W., 2007. Allelopatia w zbiorowiskach trawiastych. Post. Nauk Rol. 59, 49-96.
  • Meazza G., Scheffler B. E., Tellez M. R., Rimando A. M., Romagni J. G., Duke S. O., Nanayakkara D., Khan I. A., Abourashed E. A., Dayan F. E., 2002. The inhibitory activity of natural products on plant p-hydroxyphenylpyruvate dioxygenase. Phytochemistry 59, 281-288.
  • Młodzińska E., Kłobus G., 2006. Pompy protonowe plazmolemy i ich regulacja w komórkach roślinnych. Post. Biol. Kom. 33, 197-211.
  • Netzly D. H., Butler L. G., 1986. Roots of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26, 775-778.
  • Nimbal C. I., Yerkes C. N., Weston L. A., Weller S. C., 1996. Herbicidal activity and site of action of the natural product sorgoleone. Pest. Biochem. Physiol. 54, 73-83.
  • Owuama C. I., 1997. Sorghum: a cereal with lager beer brewing potential. World J. Microbiol. Biotech.13, 253-260.
  • Pan Z., Rimando A. M., Baerson S. R., Fishbein M., Duke S. O., 2007. Functional characterization of desaturases involved in the formation of the terminal double bond of an unusual 16:3Δ 9,12,15 fatty acid isolated from Sorghum bicolor root hairs. J. Biol. Chem. 282, 4326-4335.
  • Parylak D., Zawieja J., Jędruszczak M., Stupnicka-Rodzynkiewicz E., Dąbkowska T., Snarska K., 2006. Wykorzystanie zasiewów mieszanych, właściwości odmian lub zjawiska allelopatii w ograniczeniu zachwaszczenia. Post. Ochr. Roślin 46, 33-44.
  • Putman A., DeFrank J., 1983. Use of allelopatic cover drops to inhibit weeds. Crop Prot. 2, 173-182.
  • Rasmussen J. A., Hejl A. M., Einhelling F. E., Thomas J. A., 1992. Sorgoleone from root exudates inhibits mitochondrial function. J. Chem. Ecol. 18, 197-207.
  • Rimando A. M., Dayan F. E., Czarnota M. A., Weston L. A., Duke S. O., 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor. J. Natur. Prod. 61, 926-930.
  • Sène M., Gallet C., Dorè T., 2001. Phenolic compounds in a sahelian sorghum (Sorghum bicolor) genotype (CE145-66) and associated soils. J. Chem. Ecol. 27, 81-92.
  • Siegień I., Trocka A., Bosa K., Bogatek R., Gniazdowska A. 2008. Potencjał allelopatyczny słonecznika. Post. Nauk Rol. 60, 55-71.
  • Trezzi M. M, Vidal R. A., Dick D. P., Peralba M. C. R., Kruse N. D., 2006. Sorptive behavior of sorgoleone in ultisol in two solvent systems and determination of its lipophilicity. J. Environ. Sci. Heal. 41, 345-356.
  • Vyvyan J. R., 2002. Allelochemicals as leads for new herbicides and agrochemicals. Tetrhedrom 58, 1631-1646.
  • Weston L. A., Czarnota M. A., 2001. Activity and persistence of sorgoleone, a long-chain hydroquinon produced by Sorghum bicolor. J. Crop Prod. 4, 363-377.
  • Yang X., Owens T. G., Scheffler B. E., Weston L. A., 2004a. Manipulation of root hair development and sorgoleone production in sorghum seedlings. J. Chem. Ecol. 30, 199-213.
  • Yang X., Scheffler B. E., Weston L. A., 2004b. SOR1, a gene associated with bioherbicide production in sorghum root hairs. J. Exp. Bot. 55, 2251-2259.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv59p567kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.