Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 3-4 | 551-566
Article title

Autotoksyczność roślin jako przykład oddziaływań allelopatycznych

Title variants
Plant autotoxicity - an example of allelopathic interaction
Languages of publication
Autotoxicity is a type of intraspecific allelopathy (autoallelopathy), caused through the release into the environment compounds, which belong to secondary metabolites. Autotoxicity is observed in natural environment and in agroecosystems. It causes both, beneficial and negative effects. Autoallelopathy allows plants to survive by avoiding intra-competition. On the other hand, it is a serious economical problem. Accumulation of autotoxins in the soil causes soil sickness, and results in negative effects on plant photosynthesis, respiration, hormonal balance or ion uptake and finally led to increase in yield losses. Some species developed mechanisms to avoid autotoxicity by sequestration of the toxic compounds in cell compartments or by binding them in form of glycosides. The phenomenon of autotoxicity could be exploited also as weed management strategy.
Physical description
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Katedra Fizjologii Roślin, Wydział Rolnictwa i Biologii, Szkoła Główna Gospodarstwa Wiejskiego w Warszawie, Nowoursynowska 159, 02-776 Warszawa, Polska
  • Asao T., Hasegawa K., Sueda Y., Tomita K., Taniguchi K., Hosoki T., Pramanik Matsui Y., 2003. Aurotoxicity of root exudates from taro. Scientia Hort. 97, 389-396.
  • Azania A. A. P. M., Azania C. A. M., Alves P. L. C. A., Palaniraj R., Kadian H. S., Sati S. C., Rawat L. S., Dahiya D. S, Narwal S. S., 2003. Allelopathic plants. 7. Sunflower (Helianthus annuus L.). Allelopathy J. 11, 1-20.
  • Blum U., 1998. Effects of microbial utilization of phenolic acid and their phenolic acid breakdown products on allelopathic interactions. J. Chem. Ecol. 24, 685-708.
  • Bochořáková H., Paulová H., Slanina J., Musil P., Támborká E., 2003. Main flavonoids in the root of Scutellaria baicalensis cultivated in Europe and their comparative antiradical properties. Phytoter. Res. 17, 640-644.
  • Bonanomi G., Del Sorbo G., Mazzoleni S., Scala F., 2007. Autotoxicity of decaying tomato residues affects susceptibility of tomato to Fusarium Wilt. J. Plant Pathol. 89, 219-226.
  • Chon S. U., Choi S. K., Jung S., Jang H. G., Pyo B. S., Kim S. M., 2002. Effects of alfalfa leaf extracts and phenolic allelochemicals on early seedling growth and root morphology of alfalfa and barnyard grass. Crop Prot. 21, 1077-1082.
  • Chon S. U., Coutts J. H., Nelson C. J., 2000. Effects of light, growth media, and seedlings orientation on bioassays of alfalfa autotoxicity. Agron. J. 92, 715-720.
  • Chon S.-U., Kim J.-D. 2002. Biological activity and quantification of suspected allelochemicals from alfalfa plant parts. J. Agron. Crop Sci. 188, 281-285.
  • Chu-Chou M., 1978. Effects of root residues on growth of Pinus radiate seedlings and a mycorrhizal fungs. Ann. Appl. Biol. 90, 407-416.
  • Chung I. M., Miller D. A., 1995. Difference in autotoxicity among seven alfalfa cultivars. Agron. J. 87, 596-600.
  • Chung I. M., Seigler D., Miller D. A., Kyung S. H., 2000. Autotoxic compound from fresh alfalfa leaf extracts: identification and biological activity. J. Chem. Ecol. 26, 315-327.
  • Chung M., Miller D. A., 1995. Differences in autotoxicity among seven alfalfa cultivars. Agron. J. 87, 596-600.
  • Cosgrove D., Undersander D. 2003. Seeding Alfalfa fields back into Alfalfa. Focus Forage 5, 1-2.
  • Da Silva J. M., Da Silva A. B., Padua M., 2007. Modulated chlorophyll a fluorescence: a tool for teaching photosynthesis. J. Biol. Edu. 41, 178-183.
  • Ding J., Sun Y., Ciao C. L., Shi K., Zhou Y. H., Yu J. Q., 2007. Physiological basis of diferent allelopathic reactions of cucumber and figleaf gourd plants to cinnamic acid. J. Exp. Bot. 58, 3765-3773.
  • Dornbos D. L., Spencer G. F., Miller R. W., 1990. Medicarpin delays alfalfa seed germination and seedling growth. Crop Sci. 30, 162-166.
  • Friedman J., Rushkin E., Waller G. R., 1982. Highly potent germination inhibitors in aqueous eluate of fruits of Bishop's weed (Ammi majus L.) and avoidance of autoinhibition. J. Chem. Ecol. 8, 55-65.
  • Gallet C., 1994. Allelopathic potential in bilberry- spruce forests: influence of phenolic compounds on spruce seedlings. J. Chem. Ecol. 20, 1009-1024.
  • Gniazdowska A., 2007. Biotechnologia szansą dla zastosowania allelopatii jako alternatywnej metody zwalczania chwastów. Biotechnologia 77, 42-53.
  • Gniazdowska A., Oracz K., Bogatek R., 2004. Allelopatia - nowe interpretacje oddziaływań pomiędzy roślinami. Kosmos 2, 207-217.
  • Goplen B. P., Webster G. R., 1969. Selection in Medicago sativa L. For tolerance to alfalfa sick soil in central Alberta. Agron. J. 61, 589-590.
  • Guenzi W. D., Kehr W. R., McCalla T. M., 1964. Water soluble phytotoxic substances in alfalfa forage: Variation with variety, cutting, yea, and stage of growth. Agron. J. 56, 499-500.
  • Hall M. H., Henderlong P. R., 1989. Alfalfa autotoxic fraction characterization and initial separation. Crop Sci. 29, 425-428.
  • Jennings J. A., Nelson C. J., 2002. Zone of autotoxic influence around established alfalfa plants. Agron. J. 94, 1104-1111.
  • Jennings J. A., Nelson C. J., 1998. Influence of soil texture on alfalfa autotoxicity. Agron. J. 90, 54-58.
  • Jezierska-Domaradzka A., 2007. Allelopatyczny potencjał roślin jako możliwość ograniczania zachwaszczenia upraw rolniczych. Studia i Raporty IUNG-PIB 8, 22-28.
  • King J., 2003. Nie na moim podwórku! [W:] Sekretne życie roślin. Wydawnictwo Prószyński i S-ka, Warszawa, 200-211.
  • Koperska M., 2007. Allelopatia w stosunkach między roślinami uprawnymi i chwastami. Przemysł Fitofarmaceutyczny w Świecie 4, 1-29.
  • Leszczyńska D., Grabiński J., 2004. Kiełkowanie zbóż w układach mieszanych - aspekt allelopatyczny. Ann. UMCS 59, 1977-1984.
  • Mallik A. U., Newton P. F., 1988. Inhibition of black spruce seedling growth by forest- floor substrates of central Newfoundland. Forest Ecol. Manag. 23, 273-283.
  • Mazzoleni S., Bonanomi G., Giannino F., Rietkerk M., Dekker S. C., Zucconi F., 2007. Is plant biodiverity driven by decomposition processes? An emerging new theory on plant diverity. Community Ecol. 8, 103-109.
  • Miller D., Hannaway D., Muellere-Warrant G., Dovel R., Bohle M., Hall M., 2001. Autotoxicity and Alfalfa establishment. Sharp Bros. Seed Co.
  • Miller D. A., 1983. Allelopahic effects of alfalfa. J. Chem. Ecol. 9, 1059-1072.
  • Miller R. W., Kleiman R., Powell R., Putnam A. R., 1988. Germination and growth inhibitors of alfalfa. J. Nat. Prod. 51, 328-330.
  • Oueslati O., Ben-Hammouda M., Ghorbal N. H., Guezzah M., Kremer R. J., 2005. Barley autotoxicity as influenced by varietal and seasonal variation. J. Agron. Crop Sci. 191, 249-254.
  • Parylak D., Zawieja J., Jędruszczak M., Stupnicka-Rodzynkiewicz E., Dąbkowska T., Snarska K., 2006. Wykorzystanie zasiewów mieszanych, właściwości odmian lub zjawiska allelopatii w ograniczeniu zachwaszczenia. Post. Ochr. Roślin 46, 33-44.
  • Pellissier F., 1994. Effect of phenolic compounds in humus on the natural regeneration of spruce. Phytochemistry 36, 865-867.
  • Politycka B., 2002. Physiological responses of cucumber to allelochemicals of phenolic compounds. Allelophaty J. 10, 85-104.
  • Politycka B., 1999. Ethylene-dependent activity of phenylalanine ammonia-lyase and lignin formation in cucumber roots exposed to phenolic allelochemicals. Acta Soc. Bot. Pol. 68, 123-127.
  • Politycka B., Wójcik-Wojtkowiak D., 1988. Phytotoxic substances as the cause of the sicness of substrates used for many years in cucumber growing. Rocz. Akad. Rol. Poznań 189, 147-157.
  • Politycka B., Wójcik-Wojtkowiak D., Pudelski T., 1984. Phenolic compound as a cause of phytotoxicity in greenhouse substratem repeatedly used in cucumber growing. Acta Hort. 156, 89-94.
  • Pramanik M. H. R., Nagai M., Asao T., Matusi Y., 2000. Effects of temperature and photoperiod on phytotoxic root exudates of cucumber (Cucumis sativus) in hydroponic culture. J. Chem. Ecol. 26, 1953-1967.
  • Qiu X. H., Tang X., He Z. G., Li H. Z., 2004. Stability of baicalin aquenous solution by validated RP-HPLC. J. Chin. Pharmaceutic. Sci. 13, 134-137.
  • Saxena A., Singh D. V., Joshi N. L., 1996. Autotoxic effects of pearl millet aqueous extracts on seed geramination and seedling growth. J. Arid Environ. 33, 255-260.
  • Seguin F., Sheaffer M. A, Schmitt M. A., Russelle M. P., Randall G. W., Peterson P. R., Hoverstand T. R, Quiring S. R., Swanson D. R., 2002. Alfalfa autotoxicity: effects of reseedling delay, original stand age, and cultivar. Agron. J. 94, 775-781.
  • Siegień I., Trocka A., Bosa K., Bogatek R., Gniazdowska A. 2008. Potencjał allelopatyczny słonecznika. Post. Nauk Rol. 60, 55-71.
  • Singh H. P., Batish D. R., Kohli R. K., 1999. Autotoxicity: Concept, organisms, and ecological significance. Cri. Rev. Plant Sci. 18, 757-772.
  • Su S., He C. H., Li L. C., Chen J. K, Zhou T. S., 2008. Genetic characterization and phytochemical analysis of wild and cultivated populations of Scutellaria baicalensis. Chem. Biodivers. 5, 1353-1363.
  • Thibault J. R., Fortin J. A., Smirnoff W. A., 1982. In vitro allelopathic inhibition of nitrification by balsam poplar (populus balsamifera) and balsam fir (Abies balsamea). Am. J. Bot. 28, 478-485.
  • Thomas A. S., 1974. The effect of aqueous extracts of blue spruce leaves on seed germination and seedling growth of several plant species. Phytopathology 64, 587.
  • Tsuzuki E., Shimazaki A., Naivalulevu L. U., Tomiyama K., 1995. Injury by continuous cropping to taro and its related factors. J. Crop Sci. 64, 195-200.
  • Webster G. R., Khan S. U., Moore A. W., 1967. Poor growth of alfalfa (Medicago sativa) on some Alberta soils. Agron. J. 59, 37-41.
  • Wójcik-Wojtkowiak D., 2001. Allelopatia. [W:] Biochemiczne oddziaływania środowiskowe. Oleszek W., Głowniak K., Leszczyński B. (red.). Akademia Medyczna, Lublin, 1-12.
  • , 2010, National Tropical Botanical Garden.
  • Ye S. F., Yu J. Q., Peng Y. H., Zheng J. H, Zou L. Y., 2004. Incidence of Fusarium wilt in Cucumis sativus L. is promoted by cinnamic acid, an autotoxin in root exudates. Plant Soil 263, 143-150.
  • Yu J. Q., 2001. Autotoxic potential of cucurbit crops: phenomen, chemicals, mechanisms and means to overcome. J. Crop. Prod. 2, 335-348.
  • Yu J. Q., Matusi Y., 1994. Phytotoxic substances in the root exudates of Cucumis sativus L. J. Chem. Ecol. 20, 21- 31.
  • Yu J. Q., Matusi Y., 1997. Effects of root exudates of cucumber (Cucumis sativus) and allelochemicals on ion uptake by cucumber seedlings. J. Chem. Ecol. 23, 817-827.
  • Yu J. Q., Shou S. Y., Qian Y. R., Hu W. H., 2000. Autotoxic potential in cucurbit crops. Plant Soil 223, 147-151.
  • Yu J. Q., Ye S. F., Zhang M. F., Hu W. H., 2003. Effecs of root exudates and aqueous root extracts of cucumber (Cucumis sativus) and allelochemicals, on photosynthesis and antioxidant enzymes in cucumber. Biochem. Sys. Ecol. 31, 129-139.
  • Zhang Q., 1993. Potential role of allelopathy in the soil and the decomposing root of Chinese fir replanted woodland. Plant Soil 151, 205-210.
  • Zhang S., Jin Y., Zhu W., Tang J., Hu S., Zhou T., Chen X., 2010. Baicalin released from Scutellaria baicalensis induces autotoxicity and promotes soilborn pathogens. J. Chem. Ecol. 36, 329-338.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.