Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 3-4 | 539-550
Article title

Reakcje roślin na stres solny

Title variants
Plant responses to salinity
Languages of publication
Soil salinity, which affects nearly 6% of the world's land area, is one of the major environmental factors that adversely influences plant distribution and crop productivity. Salt affected soils are found mainly in arid and semi arid climates. However, in humid climate the overuse of fertilisers and crop protection chemicals as well as the frequent use of soluble salts to deal with glazed frost on roads and pavements also lead to increased accumulation of ions in soils and plants. Plants vary in their response to soil salinity, some species can tolerate little or no salinity while others tolerate its high levels. Nevertheless, the presence of salt in the soil causes ionic and osmotic stresses, which lead to metabolic imbalances and nutritional deficiency and may also cause oxidative stress. Soil salinity may damage the plant during vegetation period from seed germination, through growth and development to formation of reproductive organs. The plant response to salinity consists of numerous processes that generally may be divided into those minimizing the entry of salt into the plant and those minimizing the concentration of salt in the cells. Plant adaptations to salinity involve processes in many different parts of the plant and are manifested in a wide range of specialisations at different levels of organisation: from morphology to gene expression. Understanding the tolerance mechanisms is essential for breeding and genetic engineering of plants.
Physical description
  • Zakład Cytologii i Embriologii Roślin, Instytut Botaniki, Uniwersytet Jagielloński, Grodzka 52, 31-044 Kraków, Polska
  • Apse M. P., Aharon G. S., Snedden W. A., Blumwald E., 1999. Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285, 1256-1258.
  • Bartels D., Sunkar R., 2005. Drought and salt tolerance in plants. Crit. Rev. Plant Sci. 24, 23-58.
  • Bhatt M. J., Patel A. D., Bhatti P. M., Pandey A. N., 2008. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). J. Fruit Ornament. Plant Res. 16, 383-401.
  • Botella M. A., Rosado A., Bressan R. A., Hasegawa P. M., 2005. Plant adaptative responses to salinity stress. [W:] Plant abiotic stress. Jenks M. A., Hasegawa P.M. (red.). Blackwell Publishing, Oxford, 37-70.
  • Britto D. T., Ruth T. J., Lapi S., Kronzucker H. J., 2004. Cellular and whole-plant chloride dynamics in barley: insights into chloride-nitrogen interactions and salinity responses. Planta 218, 615-622.
  • Dajic Z., 2006. Salt stress. [W:] Physiology and molecular biology of stress tolerance in plants. Madhava Rao K. V., Raghavendra A. S., Janardhan Reddy K. (red.). Springer, Dordrecht, 41-99.
  • Davies W. J., Kudoyarova G., Hartung W., 2005. Long-distance ABA signaling and its relation to other signaling pathways in the detection of soil drying and the mediation of the plant's response to drought. J. Plant Growth Regul. 24, 285-295.
  • Duan D.-Y., Li W.-Q., Liu X.-J., Ouyang H., An P., 2007. Seed germination and seedling growth of Suaeda salsa under salt stress. Ann. Botan. Fennici 44, 161-169.
  • El-Sharkawy H., 1989. A review of genetic advances on breeding salt-tolerant crops. [W:] Reuse of low quality water for irrigation. Bari: CIHEAM-IAMB. BOUCHET R. (red.). Aswan Seminar, Cairo, 183-190.
  • Estañ M. T., Martinez-Rodriguez M. M., Perez-Alfocea F., Flowers T. J., Bolarin M. C., 2005. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Botan. 56, 703-712.
  • FAO (Food and Agriculture Organization), 2008. FAO Land and Plant Nutrition Management Service.
  • Flowers T. J., 1985. Physiology of halophytes. Plant Soil 89, 41-56.
  • Flowers T. J., Hajibagher M. A., Yeo A. R., 1991. Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertii hypothesis. Plant Cell Environ. 14, 319-325.
  • Fricke W., Akhiyarova G., Veselov D., Kudoyarova G., 2004. Rapid and tissue-specifc changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Botan. 55, 1115-1123.
  • Fricke W., Akhiyarova G., Wei W., Alexandersson E., Miller A., Kjellbom P. O., Richardson A., Wojciechowski T., Schreiber L., Veselov D., Kudoyarova G., Volkov V., 2006. The short-term growth response to salt of the developing barley leaf. J. Exp. Botan. 57, 1079-1095.
  • Gao S., Ouyang C., Wang S., Xu Y., Tang L., Chen F., 2008. Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant Soil Environ. 54, 374-381.
  • Gaxiola R.A., Li J., Undurraga S., Dang L.M., Allen G.J., Alper S.L., Fink G.R., 2001. Drought- and salt-tolerant plants result from overexpression of the AVP1 H+-pump. Proc. Natl. Acad. Sci. USA 98, 11444-11449.
  • Greszta J., Gruszka A., 2000. The influence of salts and hydrogen chloride on forests and urban green. Sylwan 3, 33-43.
  • Greszta J., Gruszka A., Kowalkowska M., 2002. Wpływ imisji na ekosystem. 'Śląsk' Wydawnictwo Naukowe, Katowice.
  • Groppa M.D., Benavides M.P., 2008. Polyamines and abiotic stress: recent advances. Amino Acids 34, 35-45.
  • Grynia M., Kryszak A., Grzelak M., 1989. Zasolenie gleby a roślinność zielna w pobliżu szlaków komunikacyjnych. Aura 2, 11-13.
  • Hussain T. M., Chandrasekhar T., Hazara M., Sultan Z., Saleh B. K., Gopal G. R., 2008. Recent advances in salt stress biology - a review. Biotech. Mol. Biol. Rev. 3, 8-13.
  • Jaleel C. A., Sankar B., Sridharan R., Panneerselvam R., 2008. Soil salinity alters growth, chlorophyll content, and secondary metabolite accumulation in Catharanthus roseus. Turk. J. Bot. 32, 79-83.
  • Jiang F., Hartung W., 2008. Long-distance signalling of abscisic acid (ABA): the factors regulating the intensity of the ABA signal. J. Exp. Bot. 59, 37-43.
  • Kacperska A., 2002a. Gospodarka wodna. [W:] Fizjologia roślin. Kopcewicz J., Lewak S. (red.). PWN, Warszawa, 192-227.
  • Kacperska A., 2002b. Reakcje roślin na abiotyczne czynniki stresowe. [W:] Fizjologia roślin. Kopcewicz J., Lewak S. (red.). PWN, Warszawa, 613-678.
  • Kaya M.D., Ipek A., Öztürk A., 2003. Effects of different soil salinity levels on germination and seedling growth of safflower (Carthamus tinctorius L.). Turk. J. Agricult. Forest. 27, 221-227.
  • Kaydan D., Yagmur M., 2008. Germination, seedling growth and relative water content of shoot in different seed sizes of triticale under osmotic stress of water and NaCl. Afr. J. Biotechnol. 7, 2862-2868.
  • Khan M. A., Gul B., 2008. Halophyte seed germination. [W:] Ecophysiology of high salinity tolerant plants. Khan M. A., Weber D. J (red.). Springer, Dordrecht, 11-30.
  • Khan M. A., Gul B., Weber D. J., 2002. Seed germination in relation to salinity and temperature in Sarcobatus vermiculatus. Biologia Plantarum 45, 133-135.
  • Khan M. A., Gulzar S., 2003. Germination responses of Sporobolus ioclados: a saline desert grass. J. Arid Environ. 53, 387-394.
  • Kłosowska K., Izmaiłow R., Muszyńska E., 2009. Effect of contaminated habitat of main road verges on embryological processes of the selected plant species (Lotus corniculatus L. and Lepidium ruderale L.). [W:] Pierwiastki, środowisko i życie człowieka. Pasternak K. (red.). Sysyem-Graf, Lublin, 123-132.
  • Kononowicz A.K., 1989. Cytochemiczne aspekty odporności roślin na zasolenie in vitro. Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
  • Kubiś J., 2006. Poliaminy i ich udział w reakcji roślin na warunki stresowe środowiska. Kosmos 55, 209-215.
  • Larcher W., 1995. Physiological Plant Ecology. Spring-Verlag, Berlin, Heidelberg.
  • Levit J., 1972. Responses of plants to environmental stresses. Academic Press, New York.
  • Malash N. M., Flowers T. J., Ragab R., 2008. Effect of irrigation methods, management and salinity of irrigation water on tomato yield, soil moisture and salinity distribution. Irrig. Sci. 26, 313-323.
  • Manivannan P., Jaleel C.A., Sankar B., Somasundaram R., Mural P. V., Sridharan R., Panneerselvam R., 2007. Salt stress mitigation by calcium chloride in Vigna radiata (L.) Wilczek. Acta Biol. Cracov. Series Botanica 49, 105-109.
  • Mansour M.F., 2000. Nitrogen containing compounds and adaptation of plants to salinity stress. Biologia Plantarum 43, 491-500.
  • Mittler R., 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405-410.
  • Mullen L., 2002. Salt of the Early Earth . NASA Astrobiol. Mag. 2002-06-11. .
  • Munns R, Tester M., 2008. Mechanisms of salinity tolerance. Ann. Rev. Plant Biol. 59, 651-681.
  • Munns R., 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25, 239-250.
  • Munns R., Rawson H. M., 1999. Effect of salinity on salt accumulation and reproductive development in the apical meristem of wheat and barley. Austr. J. Plant Physiol. 26, 459-464.
  • Munns R., James R. A., Läuchli A., 2006. Approaches to increasing the salt tolerance of wheat and other cereals. J. Exp. Bot. 57, 1025-1043.
  • Nandy P., Das S., Ghose M., Spooner-Hart R., 2007. Effects of salinity on photosynthesis, leaf anatomy, ion accumulation and photosynthetic nitrogen use efficiency in five Indian mangroves. Wetlands Ecol. Manage. 15, 347-357.
  • Niknam V., Razavi N., Ebrahimzadeh H., Sharifizadeh B., 2006. Effect of NaCl on biomass, protein and proline contents, and antioxidant enzymes in seedlings and calli of two Trigonella species. Biologia Plantarum 50, 591-596.
  • Parvaiz A., Satyawati S., 2008. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ. 54, 89-99.
  • Pawłowicz I., 2004. Fizjologiczna i molekularna odpowiedź rośliny na stres dehydratacyjny. Post. Biol. Kom. 31, 191-209.
  • Plett D., Berger B., Tester M., 2010. Genetics determinants of salinity tolerance in crop plants. [W:] Genes for plant abiotic stress. Jenks M. A., Wood A. J. (red.). Blackwell Publishing, Hong Kong, 83-111.
  • Sairam R. K., Tyagi A., 2004 Physiology and molecular biology of salinity stress tolerance in plants. Curr. Sci. 86, 407-421.
  • Sardo V., 2005. Halophytes and salt-tolerant glycophytes a potential resource. [W:] The use of non conventional water resources. Hamdy A. (red.). International Workshop, 12-14. 06. 2005, Alger (Algeria), 87-98.
  • Sharma N., Gupta N.K., Gupta S., Hasegawa H., 2005. Effect of NaCl salinity on photosynthesis rate, transpiration rate, and oxidative stress tolerance in contrasting wheat genotypes. Photosynthetica 43, 609-613.
  • Shi H., Quintero F. J., Pardo J. M., Zhu J. K., 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14, 465-477.
  • Siyal A. A., Siyal A. G., Abro Z. A., 2002. Salt affected soils their identification and reclamation. Pakistan J. Appl. Sci. 2, 537-540.
  • Song J., Fan H., Zhao Y., Jia Y., Du X., Wang B., 2008. Effect of salinity on germination, seedling emergence, seedling growth and ion accumulation of a euhalophyte Suaeda salsa in an intertidal zone and on saline inland. Aquatic Bot. 88, 331-337.
  • Sun K., Hunt K., Hauser B. A., 2004. Ovule abortion in Arabidopsis triggered by stress. Plant Physiol. 135, 2358-2367.
  • Telesiński A., Nowak J., Smolik B., Dubowska A., Skrzypiec N., 2008. Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean (Phaseolus vulgaris L.) plants. J. Elementol. 13, 401-409.
  • Tester M., Davenport R., 2003. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503-527.
  • Tuteja. N., 2009. Cold, salinity and drought stress. [W:] Plant stress biology: from genomics to systems biology. Hirit H. (red.). Wiley VCH Verlag GmbH&Co., Weinheim, 137-159.
  • Wang W., Vinocur B., Altman A., 2003. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1-14.
  • White P. J., Broadley M. R., 2001. Chloride in soils and its uptake and movement within the plant: a review. Ann. Bot. 88, 967-988.
  • Wilpiszewska I., 1984a. Antropogeniczne procesy zasalania gleb a uszkodzenia i zaburzenia fizjologiczne roślin. Kosmos 33, 325-338.
  • Wilpiszewska I., 1984b. Naturalne procesy zasolenia gleb i związane z nimi sposoby przystosowania roślin. Kosmos 33, 339-350.
  • Wrochna M., Gawrońska H., Gawroński S., 2006. Wytwarzanie biomasy i akumulacja jonów Na+, K+, Ca2+, Mg2+, Cl- w warunkach stresu solnego, przez wybrane gatunki roślin ozdobnych. Acta Agrophys. 7, 775-785.
  • Xiong L., Zhu J.-K., 2002. Salt tolerance. [W:] The Arabidopsis book. Somerville C. R., Meyerowitz E. M. (red.). Society of Plant Biologists, Rockville, MD. DOI/10.1199/tab.0048
  • Yamaguchi T., Blumwald E., 2005. Developing salt-tolerant crop plants: challenges and opportunities. Trends Plant Sci. 10, 615-620.
  • Zarzycki K., Trzcinska-Tacik H., Różanski W., Szelag Z., Wołek J., Korzeniak U., 2002. Ecological indicator values of vascular plants of Poland. - Ekologiczne liczby wskaźnikowe roślin naczyniowych Polski. W. Szafer Institute of Botany, PAN, Kraków.
  • Zhang H.-X., Blumwald E., 2001. Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nature Biotechnol. 19, 765-768.
  • Zhang H.-X., Hodson J. N., Williams J. P., Blumwald E., 2001. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA 98, 12832-12836.
  • Zhu H., Ding G. H., Fang K., Zhao F. G., Qin P., 2006. New perspective on the mechanism of alleviating salt stress by spermidine in barley seedlings. Plant Growth Regul. 49, 147-156.
  • Zhu J.-K., 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6, 441-445.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.