Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 59 | 3-4 | 467-478

Article title

Bezkręgowce i kręgowce zmiennocieplne jako modele w badaniach chorób zakaźnych i reakcji immunologicznych

Content

Title variants

EN
Invertebrates and ectothermic vertebrates as models for infection diseases and immune reactions

Languages of publication

PL EN

Abstracts

EN
Ethical issues concerning application of mammalian species in experiments lead reseachers to finding of alternative animal models such as invertebrates and ectothermic vertebrates. The most studied invertebrate models are fruit fly (Drosophila melanogaster) and nematode Caenorhabditis elegans. Studies of fruit fly helped to understand mechanisms of recognition of pathogen associated molecular patterns (PAMP) by pattern recognition receptors (PRR). Whereas C. elegans enlightened our knowledge about programmed cell death - apoptosis. Recently, zebrafish (Danio rerio) and clawed frog (Xenopus laevis) are often used to study the immune system. Small size and transparency of C.elegans and larvae of zebrafish enable real-time analysis of their immune responses. All the mentioned species are now used to study immune reactions upon bacterial, fungal and viral infections. Development of new laboratory tools, including specific monoclonal antibodies, should facilitate identification of crucial, evolutionarily conserved mediators associated with these processes.

Keywords

Journal

Year

Volume

59

Issue

3-4

Pages

467-478

Physical description

Dates

published
2010

Contributors

  • Zakład Immunobiologii Ewolucyjnej, Instytut Zoologii, Uniwersytet Jagielloński, Ingardena 6, 30-060 Kraków, Polska
author
  • Zakład Immunobiologii Ewolucyjnej, Instytut Zoologii, Uniwersytet Jagielloński, Ingardena 6, 30-060 Kraków, Polska

References

  • Adams M. D., 2000. The genome sequence of Drosophila melanogaster. Science 5461, 2185-2195.
  • Akira S., Takeda K., 2005, Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14 .
  • Barbazuk W. B., Korf I., Kadavi C., Heyen J., Tate S., 2000. The syntenic relationship of the zebrafish and human genomes. Genome Res. 10, 1351-1358.
  • Beutler B., 2002. TLR4 as the mammalian endotoxin sensor. Curr. Top. Microbiol. Immunol. 270, 109-120.
  • Chinchar V. G., Bryan L., Silphadaung U., Noga E., Wade D., Rollins-Smith L., 2004. Inactivation of viruses infecting ectothermic animals by amphibian and piscine antimicrobial peptides. Virology 323, 268-275.
  • Du Pasquier L., Chardonnens X., Miggiano V. C., 1975. A major histocompatibility complex in the toad Xenopus laevis. Immunogenetics 1, 482-494.
  • Gołąb J., Jakóbisiak M., Lasek W., Stokłosa T., 2009. Immunologia. Wydawnictwo Naukowe PWN, Warszawa.
  • Gravato-Nobre M. J., Hodgkin J., 2005. Caenorhabditis elegans as a model for innate immunity to pathogens. Cell Microbiol. 7, 741-751.
  • Hellsten U., Richard M., Michael J., 2010. The genome of the western clawed frog Xenopus tropicalis. Science 328, 633-636.
  • Horton T. L., Ritchie P., Watson M. D., Horton J. D., 1998. Natural cytotoxicity towards allogeneic tumor targets in Xenopus mediated by diverse splenocyte populations. Dev. Comp. Immunol. 22, 217-230.
  • Kołaczkowska E, 2007. Zapalenie (ostre) jako reakcja korzystna dla organizmu - historia badań a najnowsze osiągnięcia. Kosmos 56, 27-38.
  • Kurz C. L, Ewbank J. J, 2003. Caenorhabditis elegans: an emerging genetic model for the study of innate immunity. Nat. Rev. Genet. 4, 380-390.
  • Lanot R., Zachary D., Holder F., Meister M., 2001. Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257.
  • Leulier F, Lemaitre B, 2008. Toll-like receptors--taking an evolutionary approach. Nat. Rev. Genet. 9, 165-178.
  • Levitin A., Whiteway M., 2008. Drosophila innate immunity and response to fungal infections. Cell Microbiol. 10, 1021-1026.
  • Majno G, Joris I, 2004. Cells, tissues, and disease: principles of general pathology. Oxford University Press, Oxford, Blackwell, USA.
  • Menudier A., Rougier F. P., Bosgiraud C., 1996. Comparative virulence between different strains of Listeria in zebrafish (Brachydanio rerio) and mice. Path. Biol. 44, 783-789.
  • Morales H., Robert J., 2008. In vivo and in vitro techniques for comparative study of antiviral T-cell responses in the amphibian Xenopus. Biol. Proced. Online 10, 1-8.
  • Nasevicius A., Ekker S. C., 2000. Effective targeted gene 'knockdown' in zebrafish. Nat. Genet. 26, 216-220.
  • Pujol N., Link E. M., Liu L. X., Kurz C. L., Alloing G., Tan M. W., Ray K. P., Solari R., Johnson C. D., Ewbank J. J., 2001. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11, 809-821.
  • Rollins-Smith L. A, Conlon J. M., 2005. Antimicrobial peptide defenses against chytridiomycosis, an emerging infectious disease of amphibian populations. Dev. Comp. Immunol. 29, 589-598.
  • Schulenburg H., Kurz C. L., Ewbank J. J., 2004. Evolution of the innate immune system: the worm perspective. Immunol. Rev. 198, 36-58.
  • Sternberg P. W., 2001. Working in the post-genomic C. elegans world. Cell 105, 173-176.
  • Sullivan C., Kim C. H., 2008. Zebrafish as a model for infectious disease and immune function. Fish & Shellfish Immunol. 25, 341-350.
  • Tan M. W., Ausubel F. M., 2000. Caenorhabditis elegans: a model genetic host to study Pseudomonas aeruginosa pathogenesis. Curr. Opin. Microbiol. 3, 29-34.
  • Tochinai S., Katagiri C. H., 1975. Complete abrogation of immune responses to skin allografts and rabbit erythrocytes in the early thymectomized Xenopus. Dev. Growth Differ. 17, 283-294.
  • Tzou P., De Gregorio E., Lemaitre B., 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions. Curr. Opin. Microbiol. 5, 102-110.
  • Van Der Sar A. M., Appelmelk B. J., Vandenbroucke-Grauls J. E., Bitter W., 2004. A star with stripes: zebrafish as an infection model. Trends Microbiol. 12, 451-457.
  • Wakamatsu Y., Niwa I., Ladygina K., Kinoshita T., Araki M., Ozato K., 2001. Fertile and diploid nuclear trasnsplantants derived from embryonic cells of a small laboratory fish medaka (Oryzias latipes). Prac. Natl. Acad. Sci. USA 98, 1071-1076.
  • Wang L., Ligoxygakis P., 2006. Pathogen recognition and signalling in the Drosphila melanogaster innate immune response. Immunology 211, 251-261.
  • Yoder J. A, Nielsen M. E, Amemiya C. T, Litman G. W., 2002. Zebrafish as an immunological model system. Microbes Infect. 4, 1469-1478.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv59p467kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.