Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 3-4 | 375-384
Article title

Rola żywienia zwierząt w uzyskaniu prozdrowotnych produktów zwierzęcych

Title variants
The role of animal feeding in obtaining animal products rich in health promoting agents
Languages of publication
Modulating dietary composition can change the rumen microbial ecosystem, and as the consequence, enrich milk of ruminants in potentially health promoting agents. Number of components in milk is being recognised as conferring health benefits. These include, among others, lipid components (vaccenic acid, trans 11 C18:1 and conjugated isomers of linoleic acid, e.g. CLA). The processes in which mentioned components are produced include: rumen biohydrogenation of unsaturated fatty acids and de novo synthesis of fatty acids in mammary gland. Simplistic nutrition messages suggest that saturated fat in the milk may contribute to certain 'Western' diseases. This information has damaged the image of milk and dairy products as popular, basic, almost obligatory food items. Such messages ignore the presence of biologically active components, which in fact may act as chemopreventive agents for many 'Western' diseases. Changes of dietary components e.g. supplementing the ruminant diets with oil plant seeds, plant oils, algae and fish oil allow to obtain enriched products that may lower the risk of obesity, cancer, diabetes, and cardiovascular diseases in humans.
Physical description
  • Katedra Żywienia Zwierząt i Gospodarki Paszowej, Uniwersytet Przyrodniczy w Poznaniu, Wołyńska 33, 60-637 Poznań, Polska
  • Badinga L., Staples C. R., 2001. Definition and sources of conjugated linoleic acid. Proceedings of 12th Annual Florida Ruminant Nutrition Symposium, 8–21.
  • Bauchart D., Legay-Carmier F., Doreau M., Gaillard B., 1990. Lipid metabolism of liquid-associated and solid-adherent bacteria in rumen contents of dairy cows offered lipid-supplemented diets. Br. J. Nutr. 63, 563–578.
  • Baumgard L. H., Corl B. A., Dwyer D. A., Saebo A., Bauman D. E., 2000. Identification of the conjugated linoleic isomer that inhibits milk fat synthesis. Am. J. Physiol. Regul. Integr. Comp. Physiol. 278, R179–R184.
  • Chilliard Y., Ferlay A., Rouel J., Lamberet G., 2003. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 86, 1751–1770.
  • Duggan Ch., Gannon J., Walker A., 2002. Protective nutrients and functional foods for the gastrointestinal tract. Am. Soc. Clin. Nutr. 75, 789–808.
  • Eulitz K., Yurawecz M. P., Sehat N., Fritsche J., Roach J. A. G., Mossoba M. M., Kramer J. K. G., Adolf R. O., Ku Y., 1999. Preparation, separation, and confirmation of the eight geometrical cis/trans conjugated linoleic acid isomers 8, 10– through 11, 13–18:2. Lipids 34, 873–877.
  • Griinari J. M., Corl B. A., Lacy S. H., Chouinard P. Y., Nurmela K. V., Bauman D. E., 2000. Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta (9)-desaturase. J. Nutr. 130, 2285–2291.
  • Ha Y. L., Grimm N. K., Pariza M. W., 1987. Anticarcinogens from fried ground beef: heat-altered derivatives of linoleic acid. Carcinogenesis 8, 1881–1887.
  • Hobson P. N., Mann S. O., 1961. The isolation of glycerol-fermenting and lipolytic bacteria from the rumen of the sheep. J. Gen. Microbiol. 25, 227–240.
  • Hobson P. N., Mann S. O., 1971. Isolation of cellulolytic and lipolytic organisms from the rumen. [W:] Isolation of Anaerobes. Shapton D. A., Board R. G. (red.). Society of Applied Bacteriology, Technical Series 5, 149–158.
  • Hungate R. E., 1966. The rumen and its microbes. Academic Press, New York and London, 8–90.
  • Ip C., Banni S., Angioni E., Carta G., Mcginley J., Thompson H., Barbano D., Bauman D., 1999. Conjugated linoleic acid-enriched butter fat alters mammary gland morphogenesis and reduces cancer risk in rats. J. Nutr. 129, 2135–2142.
  • Jensen R. G., Ferris A. M., Lami-Keefe C. J., 1991. Symposium: Milk fat composition, function and potential for change. J. Dairy Sci. 74, 3228–3239.
  • Jensen R. G., 2002. Invited review: The composition of bovine milk lipids: January 1995 to December 2000. J. Dairy Sci. 85, 295–350.
  • Kelly M. L., Berry J. R., Dwyer D. A., Griinari J. M., Chouinard P. Y., Vanamburgh M. E., Bauman D. E., 1998. Dietary fatty acid sources affect conjugated linoleic acid concentrations in milk from lactating dairy cows. J. Nutr. 128, 881–885.
  • Kemp P., Lander D., 1984. The hydrogenation of come cis- and trans-octadecenoic acids to stearic acid by a rumen Fusocillus sp. Br. J. Nutr. 52, 165–170.
  • Kepler C. R., Tove S. B., 1967. Biohydrogenation of unsaturated fatty acids. III. Purification and properties of a linoleate Δ12–cis, Δ11–trans isomerase from Butyrivibrio fibrisolvens. J. Biol. Chem. 242, 5686–5692.
  • Kim Y. J., Liu R. H., Rychlik J. L., Russell J. B., 2002. The enrichment of a ruminal bacterium (Megasphaera elsdeni YJ-4) that produces the trans-10, cis-12 isomer of conjugated linoleic acid. J. Appl. Microbiol. 92, 976–982.
  • Kritchevsky D., Tepper S. A., Wright S., Czarnecki S. K., 2000. Influence of conjugated linoleic acid (CLA) on establishment and progression of atherosclerosis in rabbits. J. Am. Coll. Nutr. 19, 472–477.
  • Latham M. J., Storry J. E., Sharpe M. E., 1972. Effect of low-roughage diets on the microflora and lipid metabolism in the rumen. Appl. Microbiol. 24, 871–877.
  • Lock A. L., Garnsworthy P. C., 2003. Seasonal variation in milk conjugated linoleic acid and Δ9– desaturase activity in dairy cows. Livest. Prod. Sci. 9, 47–59.
  • Maia M. R. G., Chaudhary L. C., Figueres L., Wallach R. J., 2007. Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek. 91, 303–314.
  • Palomobo J. D., Ganguly A., Bistrain B. R., Menard M. P., 2002. The antiproliferative effects of biologically active isomers of conjugated linoleic acid on human colorectal and prostatic cancer cells. Cancer Letters. 177, 163–172.
  • Park Y., Storkson J. M., Albright K. J., Liu W., Pariza M. W., 1999. Evidence that the trans-11, cis- 12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids. 34, 235–241.
  • Park Y., Pariza M. W., 2007. Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res. Int. 40, 311–323.
  • Park Y., 2009. Conjugated linoleic acid (CLA): Good or bad trans fat? J. Food Comp. Analys. 22S, S4– S12.
  • Parodi P. W., 1999. Conjugated linoleic acid: The early years. [W:] Advances in conjugated linoleic acid research. Yurawecz M. P., Mossoba M. M., Kramer J. K. G., Pariza M. W., Nelson G. (red.). Champaign: AOCS Press, 1–11.
  • Salter A. M., Daniels Z. C. T. R., Wynn R. J., Lock A. L., Garnsworthy P. C., Buttery P. J., 2002. Manipulating the fatty acid composition of animal products. What has and what might be achieved? [W:] Recent Advances in Animal Nutrition. Garnsworthy P. C., Wiseman J. (red.). Nottingham University Press, 33–44.
  • Sieber R., Collomb M., Aeschlimann A., Jelen P., Eyer H., 2004. Impact of microbial cultures on conjugated linoleic acid in dairy products — a review. Int. Dairy J. 14, 1–15.
  • Szumacher-Strabel M., 2005. Effect of fat supplements to sheep’s and goat’s ration on unsaturated fatty acid concentration and conjugated linoleic acid isomers level in rumen fluid and milk. Ann. Poznan University of Life Sciences, 365, 1–175.
  • Urguhart P., Parkin S. M., Rogers J. S., Bosley J. A., Nicolaou A., 2002. The effect of conjugated linoleic acid on arachidonic acid metabolism and eicosanoid production in human saphenous vein endothelial cells. Bioch. Biopch. Acta 1580, 150–160.
  • Williams Ch. M., 2000. Dietary fatty acids and human health. Ann. Zootech. 43, 165–180.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.