Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 1-2 | 211-222
Article title

Różnorodność strategii pozyskiwania azotu przez rośliny.

Title variants
Various strategies of nitrogen acquisition by plants
Languages of publication
In this paper we discuss strategies of the uptake of nitrogen by plants. Nitrogen belongs to the group of the most essential nutrients for plants. Uptake of inorganic nitrogen in the form of NH4+ and NO3- is well-known event, including mechanisms of its uptake and regulation of proper genes. It is also known that symbioses with bacteria or mycorrhizal fungi can potentially improve nitrogen uptake. Additionally, such anatomical adjustments like proteoid roots, root border cells formation and formation of traps in the case of carnivorous plants can also increase nitrogen influx to plants. It was shown that plant roots can uptake considerable amounts of amino acids, but also short peptides and urea. However, it is still not clear how well plant roots can compete with soil microorganisms for organic nitrogen. Here we also describe exudation of proteases by plant roots, a potentially important strategy in plant nitrogen nutrition.
Physical description
  • Katedra Cytologii i Cytochemii Roślin, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Katedra Cytologii i Cytochemii Roślin, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Abuzinadah R. A., Read D. J., 1989. The role of proteins in the nitrogen nutrition of ectomycorrhizal plants IV. The utilization of peptides by birch (Betula pedula L.) infected with different mycorrhizal fungi. New Phytol. 112, 55-60.
  • Adamczyk B., Godlewski M., Zimny J., Zimny A., 2008. Wheat (Triticum aestivum) seedlings secrete proteases from the roots and, after protein addition, grow well on medium without inorganic nitrogen. Plant Biol. 10, 718-724.
  • Adamczyk B., Godlewski M., Smolander A., Kitunen V., 2009. Degradation of proteins by enzymes exuded by Allium porrum roots - A potentially important strategy for acquiring organic nitrogen by plants. Plant Physiol. Biochem. 47, 919-925.
  • Adamec L., 1997. Mineral nutrition of carnivorous plants: a review. Bot. Rev. 63, 273-299.
  • An C.-I., Takegawa S., Okazawa A., Fukusaki E.-I., Kobayashi A., 2002. Degradation of a peptide in pitcher fluid of carnivorous plant Nepenthes alata Blanco. Planta 215, 472-477.
  • Atkin O. K., 1996. Reassessing the nitrogen relations of Arctic plants: a mini-review. Plant Cell Environ. 19, 695-704.
  • Bajwa R., Read D. J., 1985. The biology of mycorrhizae in the Ericaceae. IX. Peptides as nitrogen sources for the ericoid endophyte and for mycorrhizal and non-mycorrhizal plants. New Phytol. 101, 459-467.
  • BennetT M. J., Marchant A., Green H. G., May S. T., Ward S. P., Millner P. A., Walker A. R., Schulz B., Feldmann K. A., 1996. Arabidopsis AUX1 gene: a permease-like regulator of auxin-mediated root gravitropism. Science 273, 948-950.
  • Bloom A. J., Sukrapanna S., Warner R., 1992. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 99, 1294-1301.
  • Bloom A. J., Jackson L. E., Smart D. R., 1993. Root growth as a function of ammonium and nitrate in the root zone. Plant Cell Environ. 16, 199-206.
  • Britto D. T., Kronzucker H. J., 2002. NH4+ toxicity in the higher plants: a critical review. J. Plant Physiol. 159, 567-584.
  • Chalot M., Brun A., 1998. Physiology of organic nitrogen acqusition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol. Rev. 22, 21-44.
  • Chapin F. S. I., Moilanen L., Kielland K., 1993. Preferential use of organic nitrogen for growth by a non-mycorrhizal arctic sedge. Nature 361, 150-153.
  • Chen L. S., Bush D. R., 1997. LHT1, A Lysine- and Histidine-Specific Amino Acid Transporter in Arabidopsis. Plant Physiol. 115, 1127-1134.
  • Crawford N. M., Glass A. D. M., 1998. Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci. 3, 389-395.
  • Darrah P. R., 1991. Models of the rhizosphere. II. A quasi-three dimensional simulation of the microbial population dynamics around a growing root releasing soluble exudates. Plant Soil 138, 147-158.
  • Dell B., Kuo J., Thompson G. J., 1980. Developement of proteoid roots in Hakea obliqua R.Br. (Proteaceae) grown in water culture. Aus. J. Bot. 28, 27-37.
  • Dobbelaere S., Croonenborghs A., Thys A., Ptacek D., Okon Y., Vanderleyden J., 2002. Effect of inoculation with wild type Azospirillum brasilense and A. irakense strains on developement and nitrogen uptake of spring wheat and grain maize. Biol. Fert. Soils 36, 284-297.
  • Dong S., Cheng L., Scagel C. F., Fuchigami L. H., 2002. Nitrogen absorption, translocation and distribution from urea applied in autumn to leaves of young potted apple (Malus domestica) trees. Tree Physiol. 22, 1305-1310.
  • Falkengren-Grerup U., Mansson K. F., Olsson M. O., 2000. Uptake capacity of amino acids by ten grasses and forbs in relation to soil acidity and nitrogen availability. Environ. Exp. Bot. 44, 207-219.
  • Fischer W. N., Kwart M., Hummel S., Frommer W. B., 1995. Substrate specificity and expression profile of amino acid transporters (AAPs) in Arabidopsis. J. Biol. Chem. 270, 16315-16320.
  • Fisher W. N., Andre B., Rentsch D., Krolkiewicz S., Tegeder M., Breitkreuz K. E., Frommer W. B., 1998. Amino acid transport in plants. Trends Plant Sci. 3, 188-195.
  • Forde B. G., Clarkson D. T., 1999. Nitrate and ammonium nutrition in plants: physiological and molecular perspectives. Adv. Bot. Res. 30, 1-90.
  • Gabryś H., 2002. Gospodarka azotowa. [W:] Podstawy fizjologii roślin. Kopcewicz J., Lewak S. (red.). PWN, Warszawa.
  • Galvan A., Quesada A., Fernandez E., 1996. Nitrate and nitrite are transported by different specific transport systems and by a bispecific transporter in Chlamydomonas reinhardtii. J. Biol. Chem. 271, 2088-2092.
  • Godlewski M., Adamczyk B., 2007. The ability of plants to secrete proteases by roots. Plant Physiol. Biochem. 45, 657-664.
  • Hawes M. C., Gunawardena U., Miyasaka S., Zhao X., 2000. The role of root border cells in plant defence. Trends Plant Sci. 5, 1360-1385.
  • Hejnowicz Z., 2002. Anatomia i histogeneza roślin naczyniowych. PWN, Warszawa.
  • Heslop-Harrison Y., 1975. Enzyme release in carnivorous plants. Front. Biol. 43, 525-578.
  • Hirner A., Ladwig F., Stransky H., Okumoto S., Keinath M., Harms A., Frommer W. B., Koch W., 2006. Arabidopsis LHT1 is a high-affinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. Plant Cell 18, 1931-1946.
  • Hodge A., Robinson D., Fitter A., 2000a. Are microorganisms more effective than plants at competing for nitrogen. Trends Plant Sci. 5, 304-308.
  • Hodge A., Stewart J., Robinson D., Griffits B. S., Fitter A. H., 2000b. Plant N capture and microfaunal dynamics from decomposing grass and earthworm residues. Soil Biol. Biochem, 32, 1763-1772.
  • Howitt S. M., Udvardi M. K., 2000. Structure, function and regulation of ammonium transporters in plants. Biochim. Biophys. Acta 1465, 152-170.
  • Jackson L. E., Schimel J. P., Firestone M. K., 1989. Short-term partitioning of ammonium and nitrate between plants and microbes in An annual grassland. Soil Biol. Biochem. 21, 409-415.
  • Jaeger C. H. III, Monson R. K., Fisk M. C., Schmidt S. K., 1999. Seasonal partitioning of nitrogen by plants and soil microorganisms in An alpine ecosystem. Ecology 80, 150-164.
  • Jones D. L., Shannon D., Junvee-Fortune T., Farrar J. F., 2005a. Plant capture of free amino acids is maximized under high soil amino acid concentrations. Soil Biol. Biochem.37, 179-181.
  • Jones D. L., Healey J. R., Willett V. B., Farrar J. F., Hodge A., 2005b. Dissolved organic nitrogen uptake by plants - An important N uptake pathway?. Soil Biol. Biochem. 37, 413-423.
  • Kaye J. P., Hart S. C., 1997. Competition for nitrogen between plants and soil microorganisms. TREE 12, 139-143.
  • Kielland K., 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecology 75, 2373-2383.
  • Kielland K., 1995. Landscape patterns of free amino acids in arctic tundra soils. Biogeochem. 31, 85-98.
  • Kladivko E. J., Keeney D. R., 1987. Soil nitrogen mineralization as affected by water and temperature interactions. Biol. Fert. Soils 5, 248-252.
  • Koh S., Wiles A. M., Sharp J. S., Naider F. R., Becker J. M., Stacey G., 2002. An oligopeptide transporter gene family in Arabidopsis. Plant Physiol. 128, 21-29.
  • Kolb K. J., Evans R. D., 2002. Implications of leaf nitrogen recycling on the nitrogen isotope composition of deciduous plant tissues. New Phytol. 156, 57-64.
  • Kopcewicz J., 2002. Podstawy fizjologii roślin. PWN, Warszawa, 246-258.
  • Kowalska I., 2002. Jak rozpoznać, że rośliny głodują. Działkowiec 7, str. 50-51.
  • Lee Y.-H., Foster J., Chen J., Voll L. M., Weber A. P. M., Tegeder M., 2007. AAP1 transports uncharged amino acids into roots of Arabidopsis. Plant J. 50, 305-319.
  • Leigh R. A., Sze H., 2001. Membrane transport meets plant nutrition. Trends Plant Sci. 6, 47-48.
  • Lipson D. A., Näsholm T., 2001. The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128, 305-316.
  • Lipson D. A., Raab T. K., Schmidt S. K., Monson R. K., 1999. Variation in competitive abilities of plants and microbes for specific amino acids. Biol .Fert. Soils 29, 257-261.
  • Liu K.-H., Huang C.-Y., Tsay Y.-F., 1999. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell, 865-874.
  • Liu K.-H., Tsay Y.-F., 2003a. Switching between the two action modes of the dual-affinity nitrate transporter CHL1 by phosphorylation. EMBO J. 22, 1005-1013.
  • Liu L. H., Ludwig U., Gassert B., Frommer W. B., von Wiren N., 2003b. AtDUR3 encodes a new type of high-affinity urea/H+ symporter in Arabidopsis. Plant Cell 15, 790-800.
  • Liu L. H., Ludwig U., Gassert B., Frommer W. B., von Wiren N., 2003c. Urea transport by nitrogen - regulated tonoplast intrinsic proteins in Arabidopsis. Plant Physiol. 133, 1220-1228.
  • Lubkowitz M., 2006. The OPT family functions in long-distance peptide and metal transport in plants. Genet. Eng. 27, 35-55.
  • Marschner H. L., 1995. Mineral nutrition in higher plants. London: Academic Press.
  • Matsumoto S., Ae N., Yamagata M., 2000. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biol. Biochem. 32, 1301-1310.
  • McLaren A. D., Jensen W. A., Jacobson L., 1960. Absorption of enzymes and other proteins by barley roots. Plant Physiol. 35, 550-556.
  • Merigout P., Lelandais M., Bitton F., Renou J.-P., Brand X., Meyer C., Daniel-Vedele F., 2008. Physiological and transcriptomic aspects of urea uptake and assimilation in Arabidopsis plants. Plant Physiol. 147, 1225-1238.
  • Meyer A., Eskandari S., Grallath S., Rentsch D., 2006. AtGAT1, a high affinity transporter for gamma-aminobutyric acid in Arabidopsis thaliana. J. Biol. Chem. 281, 7197-7204.
  • Nakayama S., Amagase S., 1968. Acid protease in Nephentes. Partial purification and properties of the enzyme. Proc. Japan Acad. 44, 358-362.
  • Näsholm T., Ekblad A., Nordin A., Giesler R., Högberg M., Högberg P., 1998. Boreal forest plants take up organic nitrogen. Nature 392, 914-916.
  • Näsholm T., Huss-Danell K., Högberg P., 2001. Uptake of glycine by field grown wheat. New Phytol. 150, 59-63.
  • Nygren C. M. R., Edqist J., Elfstrand M., Heller G., Taylor A. F. S., 2007. Detection of extracellular protease activity in different species and genera of ectomycorrhizal fungi. Mycorrhiza 17, 241-248.
  • Okamoto M., Okada K., 2004. Differential responses of growth and nitrogen uptake to organic nitrogen in four gramineous crops. J. Exp. Bot. 55, 1577-1585.
  • Okon Y., Kapulnik Y., 1986. Developement and function of Azospirillum-inoculated roots. Plant Soil 90, 3-16.
  • Ortiz-Lopez A., Chang H.-C., Bush D. R., 2000. Amino acid transporters in plants. Biochim. Biophys. Acta 1465, 275-280.
  • Osawa H., Stacey G., Gassmann W., 2006. ScOPT1 and AtOPT4 function as proton-coupled oligopeptide transporters with broad but distinct substrate specificities. Biochem. J. 393, 267-275.
  • Owen T. P. Jr, Lennon K. A., 1999. Structure and development of the pitchers from the carnivorous plant Nepenthes alata (Nephenthaceae). Am. J. Bot. 86, 1382-1390.
  • Paungfoo-Lonhienne C., Lonhienne T. G. A., Rentsch D., Robinson N., Christie M., Webb R. I., Gamage H. K., Caroll B. J., Schenk P. M., Schmidt S., 2008. Plants can use protein as nitrogen source without assistance from other organisms. Proc. Natl. Acad. Sci. USA 105, 4524-4529.
  • Paungfoo-Lonhienne C., SChenk P. M., Lonhienne T. G. A., Brackin R., Meier S., Rentsch D., Schmidt S., 2009. Nitrogen affects cluster root formation and expression of putative peptide transporters. J. Exp. Bot. 60, 2665-2676.
  • Persson J., Näsholm T., 2001. Amino acid uptake: a widespread ability among boreal forest plants. Ecol. Let. 4, 434-438.
  • Płachno B. J., Adamec L., Lichtscheidl I. K., Peroutka M., Adlassnig W., Vrba J., 2006. Fluorescence labelling of phosphatase activity in digestive glands of carnivorous plants. Plant Biol. 8, 813-820.
  • Porporato A., D'odorico P., Laio F., Rodriguez-Iturbe I., 2003. Hydrologic controls on soil carbon and nitrogen cycles.I. Modeling scheme. Adv. Water Res. 26, 45-58.
  • Purnell H. M., 1960. Studies of the family Proteaceae. I. Anatomy and morphology of the roots of some Victorian species. Aus. J. Bot. 8, 38-50.
  • Qualls R. G., Richardson C. J., 2003. Factors controlling concentration, export, and decomposition of dissolved organic nutrients in the Everglades of Florida. Biogeochemistry 62, 197-229.
  • Rawat S. R., Silim S. N., Kronzucker H. J., Siddiqi M. Y., Glass A. D. M., 1999. AtAMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana: evidence for regulation by root glutamine levels. Plant J. 19, 143-152.
  • Read D. J., 1996. The structure and function of the ericoid mycorrhizal root. Ann. Bot. 77, 365-374.
  • Rentsch D., Boorer K. J., Frommer W. B., 1998. Structure and function of plasma membrane amino acid, oligopeptide and sucrose transporters from higher plants. J.Membr. Biol. 162, 177-190.
  • Rentsch D., Schmidt S., Tegeder M., 2007. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Lett. 581, 2281-2289.
  • Rousseau J. V. D., Sylvia D. M., Fox A. J., 1994. Contribution of ectomycorrhiza to the potential nutrient absorbing surface of pine. New Phytol. 128, 639-644.
  • Schimel J. P., Chapin F. S. III, 1996. Tundra plant uptake of amino acid and NH4+ nitrogen in situ: plants compete well for amino acid N. Ecology 77, 2142-2147.
  • Schlegel H. G., 2008. Mikrobiologia ogólna. PWN. Warszawa.
  • Schmidt I. K., Michelsen A., Jonasson S., 1997. Effects of labile soil carbon on nutrient partitioning between An arctic graminoid and microbes. Oecologia 112, 557-565.
  • Schmidt S., Stewart G. R., 1997. Waterlogging and fire impact on nitrogen availability and utilization in a subtropical wet heathland (wallum). Plant Cell Environ. 20, 1231-1241.
  • Schmidt S., Stewart G. R., 1999. Glycine metabolism by plant roots and its occurence in Australian plant communities. Aust. J. Plant Physiol. 26, 253-264.
  • Schmidt S., Mason M. G., Sangtiean T., Stewart G. R., 2003. Do cluster roots of Hakea actities (Proteaceae) acquire complex organic nitrogen? Plant Soil 248, 157-165.
  • Schulze W., Schulze E. D., Pate J. S., Gillison A. N., 1997. The nitrogen supply from soils and insects during growth of the pitcher plants Nepenthes mirabilis, Cephalotus follicularis and Darlingtonia californica. Oecologia 112, 464-471.
  • Simpson R. J., Lambers H., Dalling M. J., 1983. Nitrogen redistribution during grain growth in wheat (Triticum aestivum L.). Plant Physiol. 71, 7-14.
  • Skene K. R., 1998. Cluster roots: some ecological considerations. J. Ecol. 86, 1060-1064.
  • Stribley D. P., Read D. J., 1980. The biology of mycorrhiza in the Ericaceae - VII. The relationship between mycorrhizal infection and the capacity to utilize simple and complex organic nitrogen sources. New Phytol. 86, 365-371.
  • Tsay Y.-F., Chiu C.-C., Tsai C.-B., Ho C.-H., Hsu P.-K., 2007. Nitrate transporters and peptide transpoters. FEBS Let. 581, 2290-2300.
  • Virtanen A. I., Linkola H., 1946. Organic nitrogen compounds as nitrogen nutrition for higher plants. Nature 158, 515-515.
  • von Wiren N., Gazzarrini S., Frommer W. B., 1997. Regulation of mineral nitrogen uptake in plants. Plant Soil 196, 191-199.
  • von Wiren N., Gazzarrini S., Gojon A., Frommer W. B., 2000. The molecular physiology of ammonium uptake and retrieval. Cur. Opin. Plant Biol. 3, 254-261.
  • Wallenda T., Read D. J., 1999. Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Environ. 22, 179-187.
  • Wang M. Y., Siddigi M. Y., Ruth T. J., Glass A. D. M., 1993. Ammonium uptake by rice roots. II. Kinetics of 13NH4+ influx across the plasmalemma. Plant Physiol. 103, 1259-1267.
  • Watson C. J., Miller H., Poland P., Kilpatrick D. J., Allen M. D. B., Garret M. K., Christianson C. B., 1994. Soil properties and the ability of the urease inhibitor N-(N-butyl) thiophosphoric triamide (NBTPT) to reduce ammonia volatilization from surface - applied urea. Soil Biol. Biochem. 26, 1165-1171.
  • Watt M., Evans J. R., 1999. Proteoid roots. Physiology roots. Physiology and developement. Plant Physiol. 121, 317-323.
  • Weigelt A., Bol R., Bardgett R. D., 2005. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142, 627-635.
  • Wen F., VanEtten H. D., Tsaprailis G., Hawes M. C., 2007. Extracellular proteins in pea root tip and border cell exudates. Plant Physiol. 143, 773-783.
  • Wieland G., Neumann R., Backhaus H., 2001. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop developement. Appl. Environ. Microbiol. 67, 5849-5854.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.