Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2010 | 59 | 1-2 | 199-209

Article title

Rola związków azotowych w interakcjach między roślinami a roślinożernymi owadami

Authors

Content

Title variants

EN
Nitrogen compounds in interactions between plants and herbivorous insects

Languages of publication

PL EN

Abstracts

EN
The review is focused on role of nitrogenous plant compounds in chemical interactions between herbivorous insects and their host-plants. Nitrogen is an important factor that limits nutritive value of host plants for herbivores, since animal tissues contain its higher concentration. Especially important are such nitrogenous primary metabolites as amino acids, amides, proteins and some vitamins. On the other hand, many plants also synthesize nitrogenous secondary metabolites, i.e. non-protein amino acids, amines, alkaloids, cyanogenic glycosides, hydroxamic acids and glucosinolates, that may act as repellents, deterrents and/or toxins for herbivores. At present, research in this area is focused on dual role of the nitrogen in plant nutritive value for herbivores and its participation in molecular mechanisms of regulation plant defense against pathogens and herbivores, including signaling molecules, nucleic acids and PR proteins. The basic problems concern identification and expression of genes participating in mechanisms of constitutive and/or induced resistance. Thus further studies on molecular background of the chemical interactions between plants and herbivores are needed.

Keywords

Journal

Year

Volume

59

Issue

1-2

Pages

199-209

Physical description

Dates

published
2010

Contributors

  • Katedra Biochemii i Biologii Molekularnej, Wydział Przyrodniczy, Akademia Podlaska, Prusa 12, 08-110 Siedlce, Polska

References

  • Archer L. T., Bynum E. D., Onken A. B., Wendit C., W., 1995. Influence of water and nitrogen fertilizer on biology of the Russian wheat aphid (Homoptera: Aphididae) on wheat. Crop. Protect. 14, 165-169.
  • Babic B., Poisson A., Darwish S., Lacasse J., Merkx-Jacques M., Despland E., Bede J. C., 2008. Influence of dietary nutritional composition on caterpillar salivary enzyme activity. J. Insect Physiol. 54, 286-296.
  • Banerjee T. K., Raychundhuri D., 1987. Correlation of nutritional changes with the reproductive potential of Aphis gossypi Glover on egg plants. Proc. Indian Acad. Sci. Anim. Sci. 3, 239-244.
  • Berlandier F. A., 1996. Alkaloid level in narrow-leafed lupin, Lupinus angustifolius, influenced green peach aphid reproductive performance. Entomol. Exp. Appl. 79, 19-24.
  • Bi J. L., Ballmer G. R., Hendrix D. L., Henneberry T. J., Toscano N. C., 2001. Effect of cotton nitrogen fertilization on Bemisia argentifolii population and honeydew production. Entomol. Exp. Appl. 99, 25-36.
  • Blassiolli Morales M. C., Birkett M. A., Gordon-Weeks R., Smart L. E., Martin J. L., Pye B. J., Bromilow R., Pickett J. A., 2008. cis-Jasmonate induced accumulation of defense compounds in wheat, Triticum aestivum. Phytochemistry 69, 9-17.
  • Brodbeck B. V., Stavisky J., Funderburg J. E., Andersen P. C., Olson S. M., 2001. Flower nitrogen status and populations of Frankliniella occidentalis feeding on Lycopersycion esculentum. Entomol. Exp. Appl. 99, 165-172.
  • Burges E. P. J., Philip B. A., Christeler J. T., Page N. E. M., Marshall R. K., Wohlers M. W., 2008. Tri-tropic effects of transgenic insect-resistant tobacco expressing a protease inhibitor or biotin-binding protein on adults of the predatory carabid beetle Ctenognathus novaezelandiae. J. Insect Physiol. 54, 518-528.
  • Burow M., Wittstock U., 2009. Regulation and function of specifier proteins in plants. Phytochem. Rev. 8, 87-99.
  • Byczkowski B., Macioszek V. K., Kononowicz A. K., 2009. Roślinne białka PR w odpowiedzi obronnej na atak przez grzyby nekrotroficzne. Post. Biol. Kom. 36, 121-134.
  • Cai Q. N., Han Y., Cao Y. Z., Hu Y., Zhao X., Bi J. L., 2009. Detoxification of gramine by the cereal aphid Sitobion avenae. J. Chem. Ecol. 35, 320-325.
  • Camarano S., González A., Rossini C., 2009. Biparential endowment of endogenous defensive alkaloids in Epilachna paenulata. J. Chem. Ecol. 35, 1-7.
  • Castells E., Berenbaum M. R., 2008. Resistance of the generalist moth Trichplusia ni (Noctuidae) to a novel chemical defense in the invasive plant Conium maculatum. Chemoecology 18, 11-18.
  • Chen H., Jones D. A., Howe G. A., 2006: Constitutive activation of the jasmonate signaling pathway enhances the production of secondary metabolites in tomato. FEBS Lett. 580, 2540-2546.
  • Ciepiela A. P. Sempruch C., 1993. Zmiany w zawartości wolnych aminokwasów i azotu rozpuszczalnego w kłosach wybranych odmian pszenicy ozimej wywołane żerowaniem mszycy zbożowej. Zesz. Nauk. WSRP w Siedlcach, Ser. Nauki Przyrodnicze 34, 117-129.
  • Ciepiela A. P., Sempruch C., 1999. Effect of L-3,4-dihydroxyphenylalanine, ornithine and γ-aminobutyric acid on winter wheat resistance to grain aphid. J. Appl. Entomol. 123, 285-288.
  • Ciepiela A. P., Sempruch C. 2000. Udział różnych form azotu w odporności konstytucyjnej pszenżyta jarego na mszycę zbożową. Zesz. Biol. WSP Kielce 10, 81-90
  • Collebatch G., East P., Cooper P., 2001. Preliminary characterization of digestive proteases of the green mired, Creontiades dilutus (Hemiptera, Miridae). Insect Bioch. Mol. Biol. 31, 415-423.
  • Constabel P. C., Yip L., Ryan C. A., 1998. Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Mol. Biol. 36, 55-62.
  • Crafts-Brandner S. J., 2002. Plant nitrogen status rapidly alters amino acid metabolism and extraction in Bemisia tabaci. J. Insect Physiol. 48, 33-41.
  • Dale C., Moran N. A., 2006. Molecular interactions between bacterial symbionts and their hosts. Cell 126, 453-465.
  • Darwish S. A., Pan L., Ide C., Bede J. C., 2008. Caterpillar-specific gene expression in the legume, Medicago truncatula. Plant Mol. Biol. Rep. 26, 12-31.
  • Dixon A.F.G., 1971. The life-cycle and host preferences of the bird cherry-oat aphid Rhopalosiphum padi and their bearing on the theories of host alternation in aphids. Ann. Appl. Biol. 68, 147-153.
  • Domíngez D. M., Reina M., Santos-Guerra A., Santana O., Agulló T., López-Balboa C., Gonzalez-Coloma A., 2008. Pyrrolizidine alkaloids from Canarian endemic plants and their biological effect. Bioch. System. Ecol. 36, 153-166.
  • Douglas A. E., 2006. Phloem-sap feeding by animals: problems and solutions. J. Exp. Bot. 57, 747-754.
  • Douglas A. E., 2007. Symbiotic microorganisms: untapped resources for insect pest control. Trends Biotech. 25, 338-342.
  • Dowell R.V., Steinberg B., 1990. Influence of host plant characteristics and nitrogen fertilization on development and survival of immaturate citrus blackfly, Aleurocanthus woglumi Ashby (Hom., Aleyrodidae). J. Appl. Ent. 109, 113-119.
  • Edgar J.A., Boppré M., Kaufmann E., 2007. Insect-synthesized retronecine ester alkaloids: Precursor of the common arctiine (Lepidoptera) pheromone hydroxydanaidal. J. Chem. Ecol. 33, 2266-2280.
  • Facchini P. J., 1998. Temporal correlation of tyramine metabolism with alkaloid and amide biosynthesis in elicited opium poppy cell cultures. Phytochemistry 49, 481-490.
  • Facchini P. J., Hubner-Allanach K. L., Tari L. W., 2000. Plant aromatic L-amino acid decarboxylases: evolution, biochemistry, regulation and metabolic engineering applications. Phytochemistry 54, 121-138
  • Fernie A. R., 2007. The future of metabolic phytochemistry: larger number of metabolites, higher resolution, greater understanding. Phytochemistry 68, 2861-2880.
  • Gianoli E., Niemeyer H. M., 1997. Characteristics of hydroxamic acids induction in wheat triggered by aphid infestation. J. Chem. Ecol. 23, 2695-2705.
  • Gianoli E., Niemeyer H. M., 1998. Allocation of herbivory-induced hydroxamic acids in the wild wheat Triticum uniaristatum. Chemoecology 8, 19-23.
  • Gniazdowska A., 2004. Rola tlenku azotu w metabolizmie komórki roślinnej. Kosmos 53, 343-353.
  • Goggin F. L., 2007. Plant-aphid interactions: molecular and ecological perspectives. Cur. Opinion Plant Biol. 10, 399-408.
  • Guillet G., De Luca V., 2006. Wound inducible biosynthesis of phytoalexin hydroxycinnamic acid amides of tyramine in tryptophan and tyrosine decarboxylase transgenic tobacco lines. Plant Physiol. 137, 692-699.
  • Harrevijn P., 1970. Reproduction of the aphid Myzus persicae related to the mineral nutrition of potato plants. Entomol. Exp. Appl. 13, 307-319.
  • Heil M., 2009. Damaged-self recognition in plant herbivore defence. Trends Plant Sci. 14, 356-363.
  • Hollister B., Mullin C. A., 1998. Behavioral and electrophysiological dose-response relationships in adult western corn rootworm (Diabrotica virgifera LeConte) for host pollen amino acids. J. Insect Physiol. 44, 463-470.
  • Hurej M., 1990. Wpływ nawożenia mineralnego na mszyce. Ochr. Rośl. 10, 7-10.
  • Jansson R. K., Elliott G. C., Smolowitz Z., Cole R. H., 1987. Influence of cultivar maturity time and foliar nitrogen on population growth of Myzus persicae on potato. Entomol. Exp. Appl. 43, 297-300.
  • Joern A., Behmer S., 1997. Importance of dietary nitrogen and carbohydrates to survival, growth, and reproduction in adults of the grasshopper Ageneotettix deorum (Orthoptera: Acridiae). Oecologia 112, 201-208.
  • Jones M. E., Paine T. D., 2006. Detecting changes in insect herbivore communities along a pollution gradient. Environ. Pollution 143, 377-387.
  • Jones M. E., Paine T. D., Fenn M. E., 2008. The effect of nitrogen addition on oak foliage and herbivore communities at sites with high and low atmospheric pollution. Environ. Pollution 151, 434-442.
  • Kaakeh W., Pfeiffer D. G., Marini R. P., 1992. Combined effects of spirea aphid (Homoptera: Aphididae) and nitrogen fertilization on net photosynthesis, total chlorophyll content, and greenness of apple leaves. J. Econ. Ent. 85, 939-946.
  • Kulma A., Szopa J., 2007. Catecholoamines are active compounds in plants. Plant Sci. 172, 433-440.
  • Kusano T., Yamaguchi K., Barberich T., Takahashi Y. 2007. Advances in polyamine research in 2007. J. Plant Res. 120, 345-350.
  • Kusano T., Berberich T., Tateda C., Tkahashi Y., 2008. Polyamines: essential factors for growth and survival. Planta 228, 367-381.
  • Larsson K. A. E., Zetterlund I., Delp G., Jonsson L. M. V., 2006. N-methyltransferase involved in gramine biosynthesis in barley: Cloning and characterization. Phytochemistry 67, 2002-2008.
  • Lawrens S. D., Novak N. G., Ju C. J. T., Cooke J. E. K., 2008. Potato, Solanum tuberosum, defense against Colorado potato beetle, Leptinotarsa decemlineata (Say): Microarray gene expression profiling of potato by Colorado potato beetle regurgitant treatment of wounded leaves. J. Chem. Ecol. 34, 1013-1025.
  • Leszczyński B., 2001. Charakterystyka oddziaływań środowiskowych. [W:] Wybrane zagadnienia z biochemii i toksykologii środowiska. Wyd. Akademii Podlaskiej, Siedlce 105-155.
  • Leszczyński B., Dixon A. F. G., 1990. Resistance of cereals to aphids: Interaction between hydroxamic acids and aphid Sitobion avenae (Homoptera: Aphididae). Ann. Appl. Biol. 117, 21-30.
  • Leszczyński B., Wright L. C., Bąkowski T., 1989. Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol. Exp. Appl. 52, 135-139.
  • Malinowski H., 2008. Mechanizmy obronne roślin drzewiastych przed szkodliwymi owadami. Progress Plant Protect. 48, 25-33.
  • Mevi-Schutz J., Erhardt A., 2003. Larval nutrition affects female nectar amino acid preference in the map butterfly (Araschnia levana). Ecology 84, 2788.
  • Mewis I., Tokuhisa J. G., Schulz J. C., Appel H. M., Ulrichs C., Garshenzon J., 2006. Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67, 2450-2462.
  • Mijasaka S. C., Hansen J. D., McDonald T. G., Fukumoto G. K., 2007. Effect of nitrogen and potassium in kikuyu grass on feeding by yellow sugarcane aphid. Crop. Protect. 26, 511-517.
  • Moloi M.J., Van der Westhuisen A.J., 2009. Involvement of nitric oxide during the Russian wheat aphid resistance. South African J. Bot. 75, 412.
  • Morales M., Perfecto I., Ferguson B., 2001. Traditional fertilization and its effect on corn insect populations in the Guatemalan highlands. Agic. Ecosyst. Environ. 84, 145-155.
  • Moran N. A., 2006. Symbiosis. Cur. Biol. 16, 866-871.
  • Morant A. V., Jørgensen K., Jørgensen C., Paquette S. M., Sánchez-Pérez R., Møller B. R., Bak S., 2008. β-glucosidases as detonators of plant chemical defense. Phytochemistry 69, 1795-1813.
  • Mortiari M. R., Cunha A. O. S., Ferreira L. B., Ferreira dos Santos W., 2007. Neurotoxins from invertebrates as anticonvulsants: from basic research to therapeutic application. Pharmacol. Therap. 114, 171-183.
  • Mukanganyana S., Figyeroa C. C., Hasler J. A., Niemeyer H. M., 2003. Effect of DIMBOA on detoxification enzymes of the aphid Rhopalosiphum padi (Homoptera: Aphididae). J. Insect, Physiol. 49, 223-229.
  • Mumm R., Burow M., Bukowinszkine'Kiss G., Kazanzidou E., Wittstock U., Dicke M., Gershenzon J., 2008. Formation of simple nitriles upon glucosinolate hydrolysis affect direct and indirect defense against specialist herbivore, Pieris rapae. J. Chem. Ecol. 34, 1311-1321.
  • Narváez-Vásquez J., Orozco-Cárdenas M., Ryan C.A. 2007. Systemic wound signaling in tomato leaves is cooperatively regulated by systemin and hydroxyproline-rich glycopeptide signals. Plant Mol. Biol. 65, 711-718.
  • Niemeyer H.M., 1988. Hydroxamic acids (4-hydroxy-1,4-benzoxazin-3-ones, defnce chemicals from Graminae. Phytochemistry 27, 3349-3357.
  • Nugroho L. H., Peltenburg-Looman A. M. G., de Vos H., Verberne C., Verpoorte R., 2002. Nicotine and related alkaloids accumulation in constitutive salicylic acid producing tobacco plants. Plant Sci. 162, 575-581.
  • París R., Lamattina L., Casalongué C. A., 2007. Nitric oxide promotes the wound-healing response of potato leaflets. Plant Physiol. Biochem. 45, 80-86
  • Pearce G., Marchand P. A., Griswold J., Lewis N. G., Ryan C. A., 1998. Accumulation of feruloyltyramine and p-coumaroyltyramine in tomato leaves in response to wounding. Phytochemistry 47, 659-664.
  • Pennings S. C., Simpson J. C., 2008. Like herbivores, parasitic plants are limited by host nitrogen content. Plant Ecol. 196, 245-250.
  • Raju S., Jayalakhsmi S. K., Sreeramulu K., 2009. Differential elicitation of proteases and protease inhibitors in two different genotypes of chickpea (Cicer arietinum) by salicylic acid and spermine. J. Plant Physiol. 166, 1015-1022.
  • Rasmann S., Agraval A. A., 2009. Plant defense against herbivory: progress in identifying synergism, redundancy, and antagonism between resistance traits. Cur. Opinion Plant Biol. 12, 473-478.
  • Sandström J., Moran N., 1999. How nutritionally imbalanced is phloem sap for aphids? Ent. Exp. Appl. 91, 203-210.
  • Schütz K., Bonkowski M., Scheu S., 2008. Effects of Collembola and fertilizers on plant performance (Triticum aestivum) and aphid reproduction (Rhopalosiphum padi). Basic Appl. Ecol. 9, 182-188.
  • Seals J., Mathys J., De Conink B. M. A., Cammue B. P. A., Bolle M. F. C., 2008. Plant pathogenesis-related (PR) proteins: a fokus on PR peptides. Plant Physiol. Bioch. 46, 941-950.
  • Sempruch C., 2008. Znaczenie amin alifatycznych i aromatycznych w reakcjach obronnych roślin przeciwko patogenom. Post. Nauk Rol. 334, 17-33.
  • Sempruch C., 2009. Znaczenie aminokwasów w interakcjach mszyce-rośliny żywicielskie. Post. Nauk Rol. 338, 89-101.
  • Sempruch C., Ciepiela A. P., 1998. Free amino acids of winter triticale ears settled by grain aphid. Aphids and Other Homopterous Insects 6, 55-62.
  • Sempruch C., Ciepiela A. P., 1999. The role of nitrogen and soluble carbohydrates in the interactions between selected species of winter cereals, and grain aphid (Sitobion avenae (F.), Homoptera: Aphididae). Ann. Agricult. Sci., Ser. E, Plant Prot. 28, 29-35
  • Sempruch C., Ciepiela A. P., 2002. Changes in content and amino acids composition of protein of winter triticale selected cultivars caused by grain aphid feeding. J. Plant Protec. Res. 1, 37-44.
  • Sempruch C., Starczewski J., Ciepiela A. P., 2004. Liczebność mszyc zbożowych na pszenżycie ozimym uprawianym w warunkach zróżnicowanego nawożenia azotowego. Ann. UMCS, Sec. E 59, 1771-1778.
  • Sempruch C., Ciepiela A. P., Zawadzka W., Frańczuk A., 2007. The activity of nitrate reductase and nitrite reductase in winter triticale cultivars with different susceptibility to cereal aphids. Pestycydy 1-2, 47-54.
  • Sempruch C., Leszczyński B., Chrzanowski G., Kozik A., 2009. The influence of selected plant polyamines on feeding and survival of grain aphid (Sitobion avenae F.). Pestycydy (w druku).
  • Shields V. D. C., Smith K. P., Arnold N. S., Gordon I. M., Show T. E., Waranch D., 2008. The effect of varying alkaloid concentrations on the feeding behavior of gypsy moth larvae, Lymantria dispar (L.) (Lepidoptera: Lymantridae). Arthropod-Plant Interact. 2, 101-107.
  • Siegiń I., 2007. Cyjanogeneza u roślin i jej efektywność w ochronie roślin przed atakiem roślinożerców i patogenów. Kosmos 56, 274-275.
  • Silfver T., Roininen H., Oksanen E., Rousi M., 2009. Genetic and environmental determinants of silver birch growth and herbivore resistance. Forest Ecol. Menag. 257, 2145-2149.
  • Simons L., Bultman T. L., Sullivan T. J., 2008. Effects of methyl jasmonate and an endophytic fungus on plant resistance to insect herbivores. J. Chem. Ecol. 34, 1511-1517.
  • Slesak E., Slesak M., Gabryś B., 2001. Effect of methyl jasmonate an hydroxamic acids content, protease activity, and bird cherry-oat aphid Rhopalosiphum padi (L.) probing behavior. J. Chem. Ecol. 27, 2529-2543.
  • Sprawka I., 2008. Toxicity of phytohemagglutinin (PHA) from Phaseolus vulgaris L., to the bird cherry-oat aphid (Rhopalosiphum padi L.). Pesticides 3-4, 101-108.
  • Starck Z., 2006. Różnorodne funkcje węgla i azotu w roślinach. Kosmos, 55, 243-257.
  • Textor S., Garshenzon J., 2009. Herbivore induction of the glucosinolate-myrosinase defense system: major trends, biochemical bases and ecological significance. Phytochem. Rev. 8, 149-170.
  • Throop H. L., Lerdau M. T., 2004. Effects of nitrogen deposition on insect herbivory: implications for community and ecosystem processes. Ecosystem 7, 109-133.
  • Urbańska A., Niraz S., 1990. Anatomiczne i biochemiczne aspekty żerowania mszyc zbożowych. Zesz. Prob. Post. Nauk Rol. 392, 200-213.
  • Urbańska A., Leszczyński B., Matok H., Dixon A. F. G., 2002. Cyanide detoxifying enzymes of bird cherry-oat aphid. EJPAU 5, Issue 2 (http://www.ejpau.media.pl/volume5/issue2/biology/art-01.html).
  • Vasconcelos I. M., Oliveira J. T. A., 2004. Antinutritional properties of plant lectins. Toxicon 44, 385-403.
  • Waller F., Mukherjee K., Deshmukh S. D., Achatz B., Sharma M., Schäfer P., Kogel K. H., 2008. Systemic and local modulation of plant responses by Pirifomospora indica and related Sebacinales species. J. Plant Physiol. 165, 60-70.
  • Wang J. W., Zheng L. P., Wu J. Y., Tan R. X., 2006. Involvement of nitric oxide in oxidative burst, phenylalanine ammonia-lyase activation and Taxol production induced by low-energy ultrasound in Taxus yunnanensis cell suspension cultures. Nitric Oxide 15, 351-358.
  • Wearing C. H., 1972. Responses of Myzus persicae and Bravicoryne brassicae to leaf age and water stress in Brussels sprout grown in pots. Entomol. Exp. Appl. 15, 61-80.
  • Wilkinson T. L., Douglas A. E., 2003. Phloem amino acids and the host plant range of the polyphagous aphid, Aphis fabae. Ent. Exp. Appl. 106, 103-13.
  • Zavala J. A., Casteel C. L., Nabity P. D., Berenbaum M. R., DeLucia E. H., 2009. Role of cysteine proteinase inhibitors in preference of Japanese beetles (Popillia japonica) for soybean (Glycine max) leaves of different ages and grown under elevated CO2. Oecologia 161, 35-41.
  • Zhao L. Y., Chen J. L., Cheng D. F., Sun J. R., Liu Y., Tian Z., 2009. Biochemical and molecular characterization of Sitobion avenae-induced wheat defense responses. Crop Prot. 28, 435-442.
  • Zhou X., Carter N., 1992. Effect of temperature, feeding position and crop growth stage on population dynamic of the rose-grain aphid, Metopolophium dirhodum (Hemiptera: Aphididae). Ann. Appl. Biol. 121, 27-37.
  • Złotek U., Wójcik W., 2007. Wybrane aspekty nabywania u roślin odporności typu SAR. Acta Sci. Pol. ser. Biotechnologia 6, 3-12
  • Zografou E. N., Tsiropoulos G. J., Margaritis L. H., 1998. Survival, fecundity and fertility of Bactrocera oleae, as affected by amino acid analogues. Ent. Exp. Appl. 87, 125-132.
  • Zúňiga G. E., Varanda E. M., Corurea L. J., 1988. Effect of gramine on the feeding of the aphids Shizaphis graminum and Rhopalosiphum padi. Entomol. Exp. Appl. 47, 161-165.
  • Żurańska J., Kordan B., Śledź D., 1994. Badania nad występowaniem mszyc (Homoptera, Aphididae) na trawach nasiennych. Pol. Pismo Ent. 63, 369-378.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-ksv59p199kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.