Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 1-2 | 173-198
Article title

Ekologia toksycznych sinic

Title variants
Ecology of toxic cyanobacteria
Languages of publication
Eutrophication of waters bodies, as a consequence of human activities, results in the loss of biodiversity followed by massive appearance of cyanobacteria. In freshwater ecosystems, the blooms are mostly formed by the genera Microcystis, Planktothrix, Anabaena and Cylindrospermopsis; in brackish and marine waters Nodularia spumigena, Aphanizomenon flos-aquae and Trichodesmium can thrive under favorable conditions. Species belonging to the order Nostocales and Oscillatoriales live in filaments. The vegetative cells of Nostocales may differentiate into heterocytes and akinets. The order Chroococcales aggregates in colonies of different shape and size; they rarely produce akinets. Cyanobacteria have developed a wide range of adaptation mechanisms which enable them to inhabit different niches of aquatic ecosystems and out-compete other phytoplankton organisms. Due to N2 fixation, the filamentous and heterocytes forming species can grow in nitrogen depleted waters; gas vesicles are used to regulate buoyancy and adjust to optimal light intensity, while accessory pigments (phycocyanin, phycorytrin) enable them to absorb light in most efficient way. Growth of cyanobacteria is determined by a number of environmental factors, including water temperature, light intensity, ratio between nitrogen and phosphorus concentrations as well as the dynamics of water masses. Some species produce secondary metabolites harmful to humans and animals. The compounds show hepatotoxic, neurotoxic, cytotoxic and dermatotoxic activities. Cyclic oligopeptides, termed microcystins, are the most commonly occurring cyanobacterial toxins. Like other non-ribosomal peptides, they are synthesized by thiotemplate mechanism. From one water bloom both microcystin-producing and non-microcystin-producing strains can be isolated. In some studies relationship between microcystin production and the morphology of Microcystis has been revealed. It was also proved that microcystin concentration in bloom material mostly depends on the contribution of toxic genotype; it is also affected by environmental factors, but to a lesser extent. Exposure of aquatic animals to toxin-producing cyanobacteria leads to contamination of their tissues and organs. Microcystins and nodularin may accumulate in the organisms via ingestion, transdermal rout or by taking up directly from water in dissolved form. The toxins were detected in zooplankton, mussels, snails, fish and birds from freshwater and marine environments. In liver and viscera the concentration of the compounds was highest; they were also found in muscles, gonads, kidney, gills and in feather of birds. As polar compounds, cyanobacterial hepatotoxins are probably not biomagnified in aquatic food web. Some authors suggested that detoxication of aquatic organisms proceeds through formation of glutathion conjugates. The process is probably not complete, as microcystin and nodularin were detected in the animal tissues several months after the bloom of toxic cyanobacteria. Sediments are regarded to be a secondary source of contamination of filter-feeders with the toxins. As many other compounds, microcystin and nodularin are sorbed on sediment particles, especially those with fine-grained structure. Toxic cyanobacteria blooms pose a serious threat to humans and animals. A variety of methods and techniques, characterized by different sensitivity and selectivity, are used to assess the risk for people exposed to cyanobacterial bloom or dissolved toxin in water. Additionally, some national and international regulations were issued to protect users of drinking and recreational waters. The World Health Organization derived and recommended a provisional guideline value for drinking water of 1 µg dm-3. In the Directive of European Union (2006/7/EC) the importance of cyanobacterial risk in bathing sites has been addressed. With the view of the fact that cyanotoxins accumulate in edible aquatic organisms, this source of intoxication should not be overlooked.
Physical description
  • Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Uniwersytet Gdański, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Polska
  • Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Uniwersytet Gdański, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Polska
  • Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Uniwersytet Gdański, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Polska
  • Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Uniwersytet Gdański, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Polska
  • Zakład Biologii i Ekologii Morza, Instytut Oceanografii, Uniwersytet Gdański, Al. Marszałka Piłsudskiego 46, 81-378 Gdynia, Polska
  • Amorim Á., Vasconcelos V., 1999. Dynamics of microcystins in the mussel Mytilus galloprovincialis. Toxicon, 37, 1041-1052.
  • An J., Carmichael W. W., 1994. Use of a colorimetric protein phosphatase inhibition assay and enzyme linked immunosorbent assay for the study of microcystins and nodularins. Toxicon, 32, 1495-1507.
  • Astrachan N. B., Archer B. G., Hilbelink D. R., 1980. Evaluation of the subacute toxicity and teratogenicity of anatoxin-a. Toxicon, 18, 684-688.
  • Australian Drinking Water Guidelines 6, 2004. National Water Quality Management Strategy. Ministry of Health.
  • Babica P., Kohoutek J., Bláha L., Adamovský O., Maršálek B., 2006. Evaluation of extraction approaches linked to ELISA and HPLC for analyses of microcystin-LR, -RR and -YR in freshwater sediments with different organic material contents. Anal. Bioanal. Chem. 385, 1545-1551.
  • Beattie K. A., Ressler J., Wiegand C., Krause E., Codd G. A., Steinberg C. E. W., Pflugmacher S., 2003. Comparative effects and metabolism of two microcystins and nodularin in the brine shrimp Artemia salina. Aquat. Toxicol. 62, 219-226.
  • Bednarska A., 2006. Sinice i ich wpływ na roślinożerne zwierzęta planktonowe. Wiad. Ekol. 52, 59-87.
  • Bell S. G., Codd G. A., 1994. Cyanobacterial toxins and human health. Rev. Med. Microbiol. 5, 256-264
  • Bell S. G., Codd G. A., 1996. Detection, analysis and risk assessment of cyanobacterial toxins. Issues Environ. Sci. Technol. 5, 109-122.
  • Benndorf J., Henning M., 1989. Daphnia and toxic blooms of Microcystis aeruginosa in Bautzen Reservoir (GDR). Internationale Revue der gesamten Hydrobiologie 74, 233-248.
  • Best J. H., Pflugmacher S., Wiegand C., Eddy F. B., Metcalf J. S., Codd G. A., 2002. Effects of enteric bacterial and cyanobacterial lipopolysaccharides, and of microcystin-LR, on glutathione S-transferase activities in zebra fish (Danio rerio). Aquat. Toxicol. 60, 223-231.
  • Blomqvist P., Pettersson A., Hyenstrand P., 1994. Ammonium-nitrogen: a key regulatory factor causing dominance of non-nitrogen fixing cyanobacteria in aquatic systems. Arch. Hydrobiol. 132, 141-164.
  • Błaszczyk A., Kobos J., Krakowiak A., Toruńska A., Mazur-Marzec, H., Pliński M., 2009. A comparison of phytoplankton communities among three Kartuzy la kes (northern Poland), XXVIII Międzynarodowa Konferencja Fykologiczna, Algal biodiversity in ecosystems of protected areas 21-24 V 2009, Szczecin-Cieszyno Drawskie. Book of abstracts, 61-62.
  • Bouaïcha N., Maatouk I., 2004. Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol. Lett. 148, 53-63.
  • Bouvy M., Falcao D., Marinho M., Pagano M., Moura A., 2000. Occurrence of Cylindrospermopsis (cyanobacteria) in 39 Brazilian tropical reservoirs during the 1998 drought. Aquat. Microb. Ecol. 23, 13-27.
  • Branco C. W. C., Senna P. A. C., 1994. Factors influencing the development of Cylindrospermopsis raciborskii and Microcystis aeruginosa in the Paranoá reservoir, Brasilia, Brazil. Arch. Hydrobiol. Suppl. Algol. Stud. 75, 85-96.
  • Bucka H., Wilk-Woźniak E., 1999. Cyanobacteria responsible for planktic water blooms in reservoirs in southern Poland. Algol. Stud. 94, 105-112.
  • Burchardt L., 1998. The response of Aphanizomenon flos-aquae (L.) Ralfs to changes of environmental conditions. Ocean. Stud. 1, 9-14.
  • Burchardt L., Pawlik-Skowrońska B., 2005. Zakwity sinic - konkurencja międzygatunkowa i środowiskowe zagrożenie. Wiad. Bot. 49, 39-49.
  • Capone D. G., Burns J. A., Montoja J. P., Subramaniam A., Mahaffey C., Gunderson T., Michaels A. F., Carpenter E. J., 2005. Nitrogen fixation by Trichodesmium spp.: An important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem. Cycles, 19, 1-17.
  • Carmichael W. W., He J.-W., Eschedor J., He Z.-R., Juan Y.-M., 1988. Partial structural determination of hepatotoxic peptides from Microcystis aeruginosa (Cyanobacterium) collected in ponds of central China. Toxicon, 26, 1213-1217.
  • Carmichael W. W., 1992. Cyanobacteria secondary metabolites and the cyanotoxins. J. Appl. Bacteriol. 72, 445-459.
  • Chen J., Xie P., 2005. Tissue distributions and seasonal dynamics of the hepatotoxic microcystins-LR and -RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon 45, 615-625.
  • Chen W., Song L., Peng L., Wan N., Zhang X., Gan N., 2008. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water Res. 42, 763-773.
  • Chorus I., Bartram J., 1999. Toxic Cyanobacteria in Water: a Guide to Public Health Significance, Monitoring and Management. E & FN Spon/Chapman & Hall, London.
  • Codd G. A., Oberemm A., Tarczyńska M., 2004. Recognition and awareness-raising of toxic cyanobacterial blooms and associated poisonings at Lake Barlewice, Poland in 1884, and recent cyanobacterial toxin analyses. Ecohydrol. Hydrobiol. 4, 3-6.
  • Codd G. A., Morrison L. F., Morrison L. F., Metcalf J. S., 2005. Cyanobacterial toxins: risk management for health protection. Toxicol. Appl. Pharmacol. 203, 264-272.
  • Cogliano V. J., Baan R. A., Straif K., Grosse Y., Secretan B., El Ghissassi F., 2008. Use of mechanistic data in IARC evaluations. Environ. Mol. Mutagen. 49, 100-9.
  • Cox P. A., Banack S. A., Murch S. J., 2003. Biomagnification of cyanobacterial neurotoxins and neurodegenerative disease among Chamorro people of Guam. Proc. Natl. Acad. Sci. USA, 100, 13380-13383.
  • Cox P. A., Banack S. A., Murch S. J. Rasmussen U., Tien G., Bidigare R. R., Metcalf J. S., Morrison L. F., Codd G. A., Bergman B., 2005. Diverse taxa of cyanobacteria produce β-N-methylamino-L-alanine, a neurotoxic amino acid. Proc. Natl. Acad. Sci. USA 102, 5074-5078.
  • Deblois C. P., Aranda-Rodriguez R., Giani A. Bird D. F., 2008. Microcystin accumulation in liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon, 51, 435-448.
  • DeMott W. R., Moxter F., 1991. Foraging cyanobacteria by copepods: responses to chemical defences and resource abundance. Ecol. 72, 1820-1834.
  • Dias E., Andrade M., Alverca E., Pereira P., Batoréu M. C. C., Jordan P., Silva M. J., 2009. Comparative study of the cytotoxic effect of microcistin-LR on purified extracts from M. aeruginosa on a kidney cell line. Toxicon 53, 487-495.
  • Diehnelt C. W., Peterman S. M., Budde W. L., 2005. Liquid chromatography-tandem mass spectrometry and accurate m/z measurements of cyclic peptide cyanobacteria toxins. Trends Anal. Chem. 24, 622-634.
  • Dittmann E., Börner T., 2005. Genetic contributions to the risk assessment of microcystin in the environment. Toxicol. Appl. Pharmacol. 203, 192-200.
  • Dokulil M. T., Teubner K., 2000. Cyanobacterial dominance in lakes. Hydrobiologia 438: 1-12.
  • Domingos P., Rubim T. K., Molica R. J. R., Azevedo S. M. F. O., Carmichael W. W., 1999. First report of microcystin production by picoplanktonic cyanobacteria isolated from a northeast Brazilian drinking water supply. Environ. Toxicol. 14, 31-35.
  • Drinking-water Standards for New Zealand, 2005. Wellington, Ministry of Health.
  • Druart J. C., Briand J. F., 2002. First record of Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju (Cyanobacteria) in a lotic system in France. Ann. Limnol. 38, 339-342.
  • Duy T. N., Lam P. K., Shaw G. R., Connell D. W., 2000. Toxicology and risk assessment of freshwater cyanobacterial (blue-green algal) toxins in water. Rev. Environ. Contam. Toxicol. 163, 113-185.
  • Dziennik Urzędowy Unii Europejskiej, 2006. Dyrektywa 2006/7/WE z dnia 15 lutego 2006 roku Parlamentu Europejskiego i Rady dotycząca zarządzania jakością wody w kąpieliskach, uchylająca dyrektywę 76/160EWG.
  • Engström-Öst J., Lehtiniemi M., Green S., Kozlowsky-Suzuki B., Viitasalo M., 2002. Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? J. Exp. Mar. Biol. Ecol. 276, 95-107.
  • Falconer I. R., 1993. Algal Toxins in Seafood and Drinking Water. Academic Press, London, 165-175.
  • Falconer I. R,. 2005. Cyanobacterial toxins of drinking water supplies. CRC Press, London.
  • Fastner J., Neumann U., Wirsing B., Weckesser J., Wiedner C., Nixdorf B., Chorus I., 1999. Microcystins (hepatotoxic heptapeptides) in German fresh water bodies. Environ. Toxicol. 14, 13-22.
  • Fastner J., Rücker J., Stüker A., Preußel K., Nixdorf B., Chorus I., Köhler A., Wiedner C., 2007. Occurence of the cyanobacterial toxin cylindrospermopsin in northeast Germany. Environ. Toxicol. 22, 26-32.
  • Fawell J. K., Mitchell R. E., Everett D. J., Hill R. E., 1999. The toxicity of cyanobacterial toxins in mouse. I: Microcystin-LR. Hum. Exp. Toxicol. 18, 162-167.
  • Ferber L. R., Levine S. N., Lini A., Livingston G. P., 2004. Do cyanobacteria dominate in eutrophic lakes because they fix atmospheric nitrogen?. Freshw. Biol. 49, 690-708
  • Ferriera F. M. B., Soler J. M. F., Fidalgo M. L., Fernández-Vila P., 2001. PSP toxins from Aphanizomenon flos-aquae (cyanobacteria) collected in the Crestuma-Lever reservoir (Douro river, northern Portugal). Toxicon 39, 737-761.
  • Fiore M. F., Genuário D. B., da Silva C. S. P., Shishido T. K., Moraes L. A. B., Neto R. C., Silva-Stenico M. E., 2009. Microcystin production by a freshwater spring cyanobacterium of the genus Fischerella. Toxicon 53, 754-761.
  • Fischer W. J., Altheimer S., Cattori V., Meier P. J., Dietrich D. R., Hagenbuch B., 2005. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 203, 257-263.
  • Francis G., 1878. Poisonous Australian Lake. Nature, 18, 11-12.
  • Frank C. A. P., 2002. Microcystin-producing cyanobacteria in recreational waters in southwestern Germany. Environ. Toxicol. 17, 361-366.
  • Galicka W., Lesiak T., Rakowska B., 1998. Dynamics of blue-green algae development in Sulejów dam reservoir. Oceanol. Stud. 1, 21-26.
  • Gérard C., Poullain V., Lance E., Acou A., Brient L., Carpentie A., 2009. Influence of toxic cyanobacteria on community structure and microcystin accumulation of freshwater mollusks. Environ. Pollut. 157, 609-617.
  • Golosov S. D., Ignatieva N., 1999. Hydrothermodynamic features of mass exange across the sediment-water interface in shallow lakes. Hydrobiologia 408/409: 153-157.
  • Grabowska M., 1998. Blooms of Cyanophyta in Siemianówka dam reservoir in the first years after filling. Ocean. Stud. 1, 27-31.
  • Griffiths D. J., Saker M. L., 2003. The Palm Island mystery disease 20 years on: a review of research on the cyanotoxin cylindrospermopsin. Environ. Toxicol. 18, 78-93.
  • Guidelines for Canadian Drinking Water Quality Summary Table, 2008. FPT Committee on Drinking Water.
  • Hajdu S., Höglander H., Larsson U., 2007. Phytoplankton vertical distributions and composition in Baltic Sea cyanobacterial blooms. Harm. Algae. 6, 189-205.
  • Hall S., Carson S., 2006. Determining the filtration rates of the freshwater mussel Elliptio complanata. Fayette Co. High School.
  • Haney J. F., Forsyth D. J., James M. R., 1994. Inhibition of zooplankton filtering rates by dissolved inhibitors produced by naturally occurring cyanobacteria. Arch. Hydrobiol. 132, 1-13.
  • Humpage A. R., Falconer I. R., 2003. Oral toxicity of the cyanobacterial toxin cylindrospermopsin in male Swiss albino mice: determination of no observed adverse effect level for deriving a drinking water guideline value. Environ. Toxicol. 18, 94-103.
  • Ibelings B. W., Bruning K., de Jonge J., Wolfstein K., Pires L. M. D., Postma J., Burger T., 2005. Distribution of microcystins in lake foodweb: No evidence for biomagnifications. Microb. Ecol. 49, 487-500.
  • Ibelings B. W., Chorus I., 2007. Accumulation of cyanobacterial toxins in freshwater 'seafood' and its consequences for public health: A review. Environ. Pollut. 150, 177-192.
  • ISO 20179, 2005. Water Quality: Determination of microcystins - method using solid phase extraction (SPE) and high performance liquid chromatography (HPLC) with ultraviolet detection (UV). ISO, Genewa, Szwajcaria.
  • Janson S., Carpenter E. J., Bergman B., 1994. Fine structure and immunolocalisation of proteins in Aphanizomenon sp. From the Baltic Sea. Eur. J. Phycol. 29, 203-211.
  • Jungmann D., Benndorf J., 1994. Toxicity to Daphnia of a compound extracted from laboratory and natural Microcystis spp., and the role of microcystins. Freshw. Biol. 32, 13-20.
  • Jungmann D., Ludwichowski K. U., Faltin V., Benndorf J., 1996. A field study to investigate environmental factors that could effect microcystin synthesis of a Microcystis population in the Bautzen reservoir. Int. Rev. Gesamt. Hydrobiol. 81, 493-501.
  • Jurczak T., Tarczyńska M., Karlsson K., Meriluoto J., 2004. Characterization and diversity of cyanbacterial hepatotoxins (microcystins) in blooms from Polish freshwaters identified by liquid chromatography - electrospray ionization mass spectrometry. Chromatografia 59, 571-578.
  • Jurczak T., Tarczyńska M., Izydorczyk K., Mankiewicz J., Zalewski M., Meriluoto J., 2005. Elimination of microcystins by water treatment processes - examples from Sulejow Reservoir, Poland. Water Res. 39, 2394-2406.
  • Kagalou I., Papadimitriou T., Bacopoulos V., Leonardos I., 2008. Assessment of microcystins in lake water and the omnivorous fish (Carassius gibelio, Bloch) in Lake Pamvotis (Greece) containing dense cyanobacterial bloom. Environ. Monit. Assess. 137, 185-195.
  • Kankaanpää H., Sipiä V. O., Kuparinen J. S., Ott J. L., Carmichael W. W., 2001. Nodularin analyses and toxicity of a Nodularia spumigena (Nostocales, Cyanobacteria) water-bloom in the western Gulf of Finland, Baltic Sea, in August 1999. Phycologia, 40, 268-274.
  • Kankaanpää H., Vuorinen P. J., Sipiä V., Keinänen M., 2002. Acute effects and bioaccumulation of nodularin in sea trout (Salmo trutta m. trutta L.) exposed orally to Nodularia spumigena under laboratory conditions. Aquat. Toxicol. 61, 155-168.
  • Kankaanpää H., Turunen A. K., Karlsson K., Bylund G., Meriluoto J., Sipia V., 2005. Heterogeneity of nodularin bioaccumulation in northern Baltic Sea flounders in 2002. Chemosphere 59, 1091-1097.
  • Kann J., 2008. Microcystin Bioaccumulation in Klamath River Fish and Freshwater Mussel Tissue: Preliminary 2007 - Results, rozprawa doktorska, Karuk Tribe of California. Orleans, California.
  • Kardinaal W. E. A., 2007. Who's bad? Molecular identification reveals seasonal dynamics of toxic and non-toxic freshwater cyanobacteria. Publ. Univ. Amsterdam, Instituut Biodiversiteit en Ecosysteemdynamica (IBED), 156.
  • Karjalainen M., Reinikainen M., Spoof L., Meriluoto J. A. O., Sivonen K., Viitasalo M., 2005. Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environ. Toxicol. 20, 354-362.
  • Karlsson K., Sipiä V., Kankaanpää H., Meriluoto J., 2003. Mass spectrometric detection of nodularin and desmethylnodularin in mussels and flounders. J. Chromatogr. B, 784, 24.
  • Kobos J., Mazur-Marzec H., Dittmer M., Witek B., Pliński M., 2005. Toxic cyanobacterial blooms in the Kociewskie lakes (Northern Poland). Ocean. Hydrobiol. Stud. 34, 77-84.
  • Kokociński M., Dziga D., Spoof L., Stefaniak K., Jurczak T., Mankiewicz-Boczek J., Meriluoto J., 2009. First report of the cyanobacterial toxin cylindrospermopsin in the shallow, eutrophic lakes of western Poland. Chemosphere 74, 669-675.
  • Komárek J., Komárková J. 2006. Diversity of Aphanizomenon-like cyanobacteria. Czech Phycol. Olomouc 6, 1-32.
  • Komárek J., Zapomêlowá E., 2007. Planctic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum - 1. part: coiled types. Fottea, Olomouc 8, 1-31.
  • Komárek J., Zapomêlowá E., 2008. Planctic morphospecies of the cyanobacterial genus Anabaena = subg. Dolichospermum - 2. part: straight types. Fottea, Olomouc 8, 1-14.
  • Komarzewska K., Głogowska B., 2005. Blooming of Aphanizomenon flos-aquae in the urban pond. Ocean. Hydrobiol. Stud. 33, 105-113.
  • Kononen K., 2001. Eutrophication, harmful algal blooms and species diversity in phytoplankt on communities: examples from the Baltic Sea . Ambio 30, 184-189.
  • Krüger T., Mönch B., Oppenhäuser S., Luckas B., 2009. LC-MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-L-alanine) and DAB (2,4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revolute and Lathyrus latifolius. Toxicon 55, 547-557.
  • Krzyżanek E., Kasza H., Pająk G., 1993. The effect of water blooms caused by blue-green algae on the bottom macrofauna in the Goczałkowice Reservoir (southern Poland) in 1992. Acta Hydrobiol. 35, 221-230.
  • Kuiper-Goodman T., Falconer I., Fitzgerald J,. 1999. Human health aspect. [W:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Chorus I., Bartram J. (red.). WHO Publ., E. & F. N. Spon. London-New York, 41-111.
  • Kurmayer R., Dittmann E., Fastner J., Chorus I., 2002. Diversity of microcystin genes within population of the toxic cyanobacterium Microcystis spp. In Lake Wannsee (Berlin, Germany) Microb. Ecol. 43, 107-118.
  • Kurmayer R., Kutzenberger T., 2003. Application of real-time PCR for quantification of microcystin genotypes in a population of the toxic cyanobacterium Microcystis sp. Appl. Environ. Microbiol. 69, 6723-6730.
  • Kurmayer R., Christiansen G., Fastner J., Börner T., 2004. Abundance of active and inactivee microcystin genotypes in populations of the toxic cyanobcterium Planktothrix spp. Environ. Microbiol. 6, 831-841.
  • Kurmayer R., Christiansen G. 2009. The genetic basis of toxin production in Cyanobacteria. Freshw. Rev. 2, 31-50.
  • La Roche J., Breitbarth E., 2005. Importance of the diazotrophs as a source of new nitrogen in the ocean. J. Sea Res. 53, 67-91.
  • Laamanen M. J., Forsström L., Sivonen K., 2002. Diversity of Aphanizomenon flos-aquae (cyanobacterium) populations along a Baltic Sea salinity gradient. Appl. Environ. Microbiol. 68, 5296-5303.
  • Lampert W., 1981b. Inhibitory and toxic effects of blue green - algae on Daphnia. Int. Rev. Ges. Hydrobiol. 66, 285-298.
  • Lance E., Bugajny E., Bormans M., Gerard C., 2008. Consumption of toxic cyanobacteria by Potamopyrgus antipodarum (Gastropoda, Prosobranchia) and consequences on life traits and microcystin accumulation. Harm. Algae 7, 464-472.
  • Lankoff A., Banasik A., Nowak M., 2002. Protective effect of melatonin against nodularin-induced oxidative stress. Arch. Toxicol. 76, 158-165.
  • Legnani E., Copetti D., Oggioni A., Tartari G., Palumbo M. T., Morabito G., 2005. Planktothrix rubescens' seasonal dynamics and vertical distribution in Lake Pusiano (North Italy). J. Limnol. 64, 61-73.
  • Lehtimäki J., Moisander P., Sivonen K., Kononen K., 1997. Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Appl. Environ. Microbiol. 63, 1647-1656.
  • MacKintosh C., Beattie K. A., Klumpp S., Cohen P., Codd G. A., 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187-192.
  • Magalhães V. F., Soares R. M., Azevedo S. M. F. O., 2001. Microcystin contamination in fish from the Jacarepaguá Lagoon (Rio de Janeiro, Brazil): ecological implication and human health risk. Toxicon 39, 1077-1085.
  • Magalhães V. F., Marinho M. M., Domingos P., Oliveira A. C., Costa S. M., Azevedo L. O., Azevedo S. M. F. O., 2003. Microcystins (cyanobacteria hepatotoxins) bioaccumulation in fish and crustaceans from Sepetiba Bay (Brasil, RJ). Toxicon 42, 289-295.
  • Mankiewicz J., Komárková J., Izydorczyk K., Jurczak T., Tarczyńska M., Zalewski M., 2005. Hepatotoxic cyanobacterial blooms in the lakes of northern Poland. Environ. Toxicol. 20, 499-506.
  • Martins J. C., Vasconcelos V. M., 2009. Microcystin Dynamics in Aquatic Organisms. J. Toxicol. Environ. Health 12, 65-82.
  • Mazur H., Lewandowska J., Błaszczyk A., Kot A., Pliński M., 2003. Cyanobacterial toxins in fresh and brackish waters of Pomorskie Province (Northern Poland). Oceanol. Hydrobiol. Stud. 32, 15-26.
  • Mazur-Marzec H., Meriluoto J., Pliński M., Szafranek J., 2006. Characterization of nodularin variants in Nodularia spumigena from the Baltic Sea using liquid chromatography/mass spectrometry/mass spectrometry. Rapid. Commun. Mass Spectrom. 20, 2023-2032.
  • Mazur-Marzec H., Krężel A., Kobos J., Pliński M., 2006. Toxic Nodularia spumigena blooms in the coastal waters of the Gulf of Gdańsk: a ten-year survey. Oceanologia 48, 255-273.
  • Mazur-Marzec H., Tymińska A., Szafranek J., Pliński M., 2007. Accumulation of nodularin in sediments, mussels, and fish from the Gulf of Gdańsk, southern Baltic Sea. Environ. Toxicol. 22, 101-111.
  • Mazur-Marzec H., Spoof L., Kobos J., Pliński M., Meriluoto J., 2008. Cyanobacterial hepatotoxins, microcystins and nodularins, in fresh and brackish waters of the Pomeranian Province, northern Poland. Oceanol. Hyrobiol. Stud. 37, 3-21.
  • Meriluoto J. A., Nygard S. E., Dahlem A. M., Eriksson J. E., 1990. Synthesis, organotropism and hepatocellular uptake of two tritium-labeled epimers of dihydro-microcystin-LR, a cyanobacterial peptide toxin analog. Toxicon, 28, 1439-1446.
  • Messyasz B., 1998. Seasonal changes of phytoplankton dominated by cyanoprocaryota in Lake Laskownickie. Oceanol. Stud. 1, 33-37.
  • Mohamed Z. A., 2001. Accumulation of cyanobacterial hepatotoxins by Daphnia in some Egyptian irrigation canals. Ecotoxicol. Environ. Saf. 50, 4-8.
  • Mohamed Z. A., Carmichael W. W., Hussein A. A., 2003. Estimation of microcystis in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environ. Toxicol. 18, 137-141.
  • Mohamed Z. A., El-Sharouny H. M., Ali W. S., 2007. Microcystin concentrations in the Nile River sediments and removal of microcystin and removal of microcystin-LR by sediments during batch experiments. Arch. Environ. Contam. Toxicol. 52, 489-495.
  • Morris R. J., Williams D. E., Luu H. A., Holmes C. F. B., Andersen R. J., Calvert S. E., 2000. The adsorption of microcystin-LR by natural clay particles. Toxicon, 38, 303-308.
  • Mur L. R., Skulberg O. M., Utkilen H., 1999. Cyanobacteria in the environment, [W:] Chapter 2, Toxic cyanobacteria in water. A guide to their public health consequences. Chorus I., Bartam J. (red.), Monitoring and Management, 15-39.
  • Namikoshi M., Choi B. W., Sakai R., Sun F., Rinehart K. L., Carmichael W. W., Evans W. R., Cruz P., Munro M. H. G., Blunt J. W., 1994. New nodularins: A general method for structure assignment. J. Org. Chem. 59, 2349-2357.
  • Ohta T., Sueoka E., Iida N., Komori A., Suganuma M., Nishiwaki R., Tatematsu M., Kim S. J., Carmichael W. W., Fujiki H., 1994. Nodularin, a potent inhibitor of protein phosphatases 1 and 2A, is a new environmental carcinogen in male F344 rat liver. Cancer Res. 54, 6402-6406.
  • Ozawa K., Yokoyama A., Ishikawa K., Kumagai M., Watanabe M. F. Park H. D., 2003. Accumulation and depuration of microcystin produced by the cyanobacterium Microcystis in a freshwater snail. Limnol. 4, 131-138.
  • Padisak J., 1992. Seasonal succession of phytoplankton in the large shallow lake (Balaton, Hungary): A dynamic approach to ecological memory, its possible role and mechanisms J. Ecol. 80, 217-230.
  • Padisak J., 1997. Cylindrospermopsis raciborskii (Woloszynska) Seenayya et Subba Raju, an expanding, highly adaptive cyanobacterium: worldwide distribution and review of its ecology. Arch. Hydrobiol. (Suppl. ) 107, 563-593.
  • Paerl H. W., 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35, 25-35.
  • Pawlik-Skowrońska B., Skowroński T., Pirszel J., Adamczyk A., 2004. Relationship between cyanobacterial bloom composition and anatoxin-a and microcystin occurrence in the eutrophic dam reservoir (SE Poland). Pol. J. Ecol. 52, 479-490.
  • Pearson L. A., Neilan B. A., 2008. The molecular genetics of cyanobacterial toxicity as a basis for monitoring water quality and public health risk. Curr. Opin. Biotechnol. 19, 281-288.
  • Pereira P., Onodera H., Andrinolo D., Franca S., Araújo F., Lagos N., Oshima Y., 2000. Paralytic shellfish toxins in the freshwater cyanobacterium Aphanizomenon flos-aquae, isolated from Montargil reservoir, Portugal. Toxicon 38, 1689-1702.
  • Pflugmacher S., Wiegand C., Oberemm A., Beattie K. A., Krause E., Codd G. A., Steinberg C. E. W., 1998. Identification of an enzymatically formed glutathione conjugate of the cyanobacterial hepatotoxin microcystin-LR: the first step of detoxication. Biochim. Biophys. Acta 1425, 527-533.
  • Pliński M., Jóźwiak T., 1996. Dynamics of heterocystous cyanobacteria growth in the brackish waters, [W:] Harmful and Toxic Algal Blooms. Yasumoto T., Oshima Y., Fukuyo Y. (red.), Intergov. Oceanogr. Commission of UNESCO, 549-551.
  • Preußel K., Stüken A., Wiedner C., Chorus I., Fastner J., 2006. First report on cylindrospermopsin producing Aphanizomenon flos-aquae (Cyanobacteria) isolated from two German lake. Toxicon, 47, 156-162.
  • Rapala J., Erkomaa K., Kukkonen J., Sivonen K., Lahti K., 2002. Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography-UV detection and enzyme-linked immunosorbent assay: Comparison of methods. Anal. Chim. Acta 466, 213-231.
  • Rinehart K. L., Namikoshi M., Choi B. W., 1994. Structure and biosynthesis of toxins from blue-green algae (cyanobacteria). J. Appl. Phycol. 6, 159-176.
  • Rinta-Kanto J. M., Ouellette A. J. A., Boyer G. L., Twiss M. R., Bridgeman T. B., Wilhelm S. W., 2005. Quantification of toxic Microcystis spp. during the 2003 and 2004 blooms in Western Lake Erie using quantitative real-time PCR. Environ. Sci. Technol. 3, 4198-4205.
  • Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y., 1979. Generic assignments, strain histories and properties of pure cultures of Cyanobacteria. J. Gen. Microbiol. 111, 1-61.
  • Romans K. M., Carpenter E. J., Bergman B., 1994. Bouyancy regulation in the colonial diazotrophic cyanobacterium Trichodesmium tenue: Ultrastructure and storage of carbohydrate, polyphosphate and nitrogen. J. Phycol. 30, 935-942.
  • Rosén J., Hellenäs K. E., 2008. Determination of the neurotoxin BMAA (β-N-methylamino-L-alanine) in cycad seed and cyanobacteria by LC-MS/MS (liquid chromatography tandem mass spectrometry). The Analyst 133, 1785-1789.
  • Rozmiarek G., 1983. Fitoplankton jeziora Miedwie i jego dopływów na tle charakterystyki zbiornika i jego zlewni - Phytoplankton of Miedwie Lake and its tributaries against the background of the characteristic of the water reservoir and its basin. Prace Komis. Biol., Pozn. Tow. Przyj. Nauk., Wydz. Mat.-Przyr. 64, 128
  • Rozporządzenie Ministra Zdrowia z dnia 16 października 2002 roku w sprawie wymagań, jakim powinna odpowiadać woda w kąpieliskach, Dz. U. 2002 Nr 183 poz. 1530.
  • Rozporządzenie Ministra Zdrowia z dnia 19 listopada 2002 roku w sprawie wymagań dotyczących jakości wody przeznaczonej do spożycia przez ludzi.
  • Rozporządzenie Ministra Zdrowia z dnia 29 marca 2007 roku w sprawie jakości wody przeznaczonej do spożycia przez ludzi.
  • Rybicka D., 2005. Potentially toxic blue-green algae (Cyanoprokaryota) in the Vistula Lagoon. Ocean. Hydrobiol. Stud. (Suppl.) 34, 161-173.
  • Saker M. L., Griffiths D. J., 2001. Occurrence of blooms of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenayya and Subba Raju in a north Queensland domestic water supply. Mar. Freshw. Res. 52, 907-915.
  • Schober E., Werndl M., Laakso K., Korschineck I., Sivonen K., Kurmayer R., 2007. Interlaboratory comparison of Taq Nuclease Assays for the quantification of the toxic cyanobacteria Microcystis sp. J. Microbiol. Methods, 69, 122-128.
  • Shapiro J., 1990. Current beliefs regarding dominance of blue-greens: the case for the importance of CO2 and pH. Verh. Int. Ver. Limnol. 24: 38-54.
  • Sipiä V. O., Kankaanpää H., Flinkman J., Lahti K., Meriluoto J. A. O., 2001a. Time-dependent accumulation of cyanobacterial hepatotoxins in flounders (Platichthys flesus) and mussels (Mytilus edulis) from Northern Baltic Sea. Environ. Toxicol. 16, 330-336.
  • Sipiä V. O., Kankaanpää H. T., Lahti K., Carmichael W. W., Meriluoto J. A. O., 2001b. Detection of nodularin in flounders and cod from the Baltic Sea. Environ. Toxicol. 16, 121-126.
  • Sipiä V. O., Kankaanpää H., Pflugmacher S., Flinkman J. Furey A., James K. J., 2002a. Bioaccumulation and detoxication of nodularin in tissues of flounder (Platichthys flesus), mussels (Mytilus edulis, Dreissera polymorpha) and clams (Macoma balthica) from the Northern Baltic Sea. Ecotoxicol. Environ. Saf. 53, 305-311.
  • Sipiä V. O, Lahti K., Kankaanpää H. T., Vuorinen P. J., Meriluoto J. A. O., 2002b. Screening for cyanobacterial hepatotoxins in herring and salmon from the Baltic Sea. Aquat. Ecosyst. Health Manage. 5, 451-456.
  • Sipiä V. O., Karlsson K. M., Meriluoto J. A. O., Kankaanpää H. T., 2003. Eiders (Somateria mollissima) obtain nodularin, a cyanobacterial hepatotoxin, in Baltic Sea food web. Environ. Toxicol. Chem. 23, 1256-1260.
  • Sivonen K., 1990. Effects of light, temperature, nitrate, orthophosphate, and bacteria on growth of and hepatotoxin production by Oscillatoria agardhii strains. Appl. Environ. Microbiol. 56, 2658-2666.
  • Sivonen K., Jones G., 1999. Cyanobacterial toxins. [W:] Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management, Chorus I., Bartram J. (red.). WHO Publ., E. & F. N. Spon, London-New York, 41-111.
  • Sivonen, K., Börner T., 2008. Bioactive compounds produced by cyanobacteria. [W:] Herrero A., Flores E., (red.). The Cyanobacteria. Molecular biology, genomics and evolution. Caister Academic Press, Norfolk, UK., 159-197.
  • Skulberg O. M., Underdal B., Utkilen H., 1994. Toxic waterblooms with cyanophytes in Norway - current knowledge. Arch. Hydrobiol. Suppl. Algol. Stud. 75, 279-289.
  • Smith J. L., Haney J. F., 2006. Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish (Lepomis gibbosus). Toxicon 48, 580-589.
  • Spoof L., Karlsson K., Meriluoto J., 2001. High-performance liquid chromatographic separation of microcystins and nodularin, cyanobacterial peptide toxins, on C18 and amide C16 sorbents. J. Chromatogr. A, 909, 225-236.
  • Spoof L., Vesterkvist P., Lindholm T., 2003. Screening for cyanobacterial hepatotoxins, microcystins and nodularin in environmental water samples by reversed-phase liquid chromatography-electrospray ionisation mass spectrometry. J. Chromatogr. A, 1020, 105-119.
  • Staal M., Rabouille S., Stal L. J., 2007. On the role of oxygen for nitrogen fixation in the marine cyanobacterium Trichodesmium sp. Environ. Microbiol. 9, 727-736
  • Stal L. J., Albertano P., Bergman B., von Bröckel K., Gallon J. R., Hayes P. K., Sivonen K., Walsby A. E., 2003. BASIC: Baltic Sea cyanobacteria. An investigation of the structure and dynamics of water blooms of cyanbacteria in the Baltic Sea - responses to a changing environment. Cont. Shelf Res. 23, 1695-1714.
  • Stefaniak K., Kokociński M., 2005. Occurrence of invasive Cynobacteria species in polimictic lakes of the Wielkopolska Region (Western Poland). Ocean. Hydrobiol. Stud. (Suppl.) 34, 137-148.
  • Stefaniak K., Kokociński M., Messyasz B., 2005. Dynamics of Planktothrix agardhii (Gom.) Anagn. et. Kom. blooms in polimictic Lake Laskownickie and Grylewskie (Wielkopolska Region) Poland. Ocean. Hydrobiol. Stud. (Suppl.) 34, 125-136.
  • Stewart I., Schluter P. J., Shaw G. R., 2006. Cyanobacterial lipopolysaccharides and human health - a review. Environ. Health, 24, 5-7.
  • Subramaniam A., Brown C. W., Hood R. R., Carpenter E. J., Capone D. G., 2001. Detecting Trichodesmium blooms in SeaWiFS imagery. Deep-Sea Res. II 49, 107-121.
  • Tencalla F. G., Dietrich D. R., Schlatter C., 1994. Toxicity of Microcystis aeruginosa peptide toxin to yearling rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 30, 215-224.
  • Tillett D., Dittmann E., Erhard M., von Döhren H., Börner T., Neilan B. A., 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem. Biol. 7, 753-764.
  • Toruńska A., Bolałek J., Pliński M., Mazur-Marzec H., 2008. Biodegradation and sorption of nodularin (NOD) in fine-grained sediments. Chemosphere 70, 2039-2046.
  • Ustawa z dnia 7 czerwca 2001 roku o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków, Dz. U. 2001 Nr 72 poz. 747.
  • Vasconcelos V. M., 1999. Cyanobacterial toxins in Portugal: effects on aquatic animals and risk for human health. Braz. J. Med. Biol. Res. 32, 249-254.
  • Vezie C., Rapala J., Vaitomaa J., Seitsonen J., Sivonen K., 2002. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystins strains and on intracellular microcystin concentrations. Microb. Ecol. 43, 443-454.
  • Via-Ordorika L., Fastner J., Kurmayer R., Hisbergues M., Dittmann E., Komarèk J., Erhard M., Chorus I., 2004. Distribution of microcystin-producing and non-microcystin producing Microcystis sp. in European freshwater bodies: detection of microcystins and microcystin genes in individual colonies. Syst. Appl. Microbiol. 27, 592-602.
  • Wacklin P., Hoffmann L., Komárek J., 2009. Nomenclatiral validation of the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet et Flahaut) comb. nova. Fottea 9, 59-64.
  • Walsby A. E., Hayes P. K., Boje R., Stal L. J., 1997. The selective advantage of buoyancy provided by gas vesicles for planktonic cyanobacteria in the Baltic Sea. New Phytologist 136, 407-417.
  • Walsby A. E., 2005. Stratification by cyanobacteria in lakes: a dynamic buoyancy model indicates size limitations met by Planktothrix rubescens filaments. New Phytologist 168, 365-376.
  • Wasmund N., 1997. Occurrence of cyanobacterial blooms in the Baltic Sea in relation to environmental conditions. Int. Revue ges. Hydrobiol. 82, 169-184.
  • Watanabe M., 1996. Isolation, cultivation and classification of bloom-forming Microcystis in Japan [W:] Toxic Microcystis. Watanabe M. F., Harada K.-I., Carmichael W. W., Fujiki H. (red.). Boca Raton, FL, 13-34.
  • Watanabe M. F., Park H. D., Kondo F., Harada K., Hayashi H., Okino T., 1997. Identification and estimation of microcystins in freshwater mussels. Nat. Toxins, 5, 31-35.
  • Welker M., von Döhren H., Tauscher H., Steinberg C. E. W., Erhard M., 2003. Toxic Microcystis in shallow lake Müggelsee (Germany): dynamics, distribution, diversity. Arch. Hydrobiol. 157, 227-248.
  • WHO, 1998. Guidelines for Drinking-water Quality. Second edition, Addendum to Volume 2, Health criteria and other supporting information. Geneva
  • WHO, 2003. Guidelines for safe recreational water environments - Volume 1: Coastal and fresh water. Geneva.
  • WHO, 2008. Guidelines for Drinking-water Quality, Third Edition, Incorporating the first and second addenda, Volume 1, Recommendations. Geneva.
  • Wiedner C., Chorus I., Fastner J., 2001. The waterbodies surveyed for cyanotoxins in Germany [W:] The Cyanotoxins. Chorus I. (red.). Springer, 6-21.
  • Willame R., Jurczak T., Iffly J. F., Kull T., Meriluoto J., Hoffmann L., 2005. Distribution of hepatotoxic cyanobacterial blooms in Belgium and Luxembourg. Hydrobiolgia 551, 99-117.
  • Willén T., Mattsson R. 1997. Water-blooming and toxin-producing cyanobacteria in Swedish fresh and brackish waters, 1981-1995. Hydobiologia 353, 181-192.
  • Yokoyama A., Park H. D., 2003. Depuration kinetics and persistence of the cyanobacterial toxin microcystin-LR in the freshwater bivalve Unio douglasiae. Environ. Toxicol. 18, 61-67.
  • Yoshida T., Takashima Y., Tomaru Y., Shirai Y., Takao Y., Hiroishi S., Nagasaki K., 2006. Isolation and characterisation of a cyanophage infecting the toxic cyanobacterium Microcystis aeruginosa. Appl. Environ. Microbiol. 72, 1239-1247.
  • Yoshida M., Yoshida T., Takashima Y., Hosoda N., Hiroishi S., 2007. Dynamics of microcystin-producing and non-microcystin-producing Microcystis population is correlated with nitrate concentration in Japanese lake. FEMS Microbiol. Lett. 266, 49-53.
  • Yoshida M., Yoshida T., Kashima A., Takashima Y., Hosoda N., Nagasaki K., Hiroishi S., 2008. Ecological dynamics of the toxic bloom-forming cyanobacterium Microcystis aeruginosa and its cyanophage in freshwater. Appl. Environ. Microbiol. 74, 3269-3273.
  • Zagajewski P., Gołdyn R., Fabiś M., 2007. Water blooms and their toxicity in public swimming areas of lakes in the Poznań district. Ocean. Hydrobiol. Stud. 36 (Suppl. 1), 181-187.
  • Zhang H.-j., Zhang J.-y., Hong Y., Chen Y.-x., 2007. Evaluation of organ distribution of microcystins in the freshwater phytoplanktivorous fish Hypophthalmichthys molitrix. J. Zhejiang Univ. Sci. B 8, 116-120.
  • Zhang D., Xie P., Liu Y., Qiu T., 2009. Transfer, distribution and bioaccumulation of microcystins in the aquatic food web in Lake Taihu, China, with potential risks to human health. Sci. Environ. 407, 2191-2199.
  • Ziębek E,. 1998. Water temperature of the littoral zone during the domination of the blue-green algae Planktothrix agardhii and Limnothrix redeckei in the composition of phytoplankton in the polytrophic Lake Jeziorak Mały. Oceanol. Stud. 1, 53-59.
  • Znachor P., Jurczak T., Komárkowa J., Jezberová J., Mankiewicz J., Kaštovská K., Zapomělová E., 2006. Summer changes in cyanobacterial bloom composition and microcystin concentration in eutrophic Czech reservoirs. Environ. Toxicol. 21, 236-243.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.