Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 1-2 | 161-171
Article title

Rola niefimbrialnych adhezyn: białek błony zewnętrznej i lipopolisacharydu w adhezji i inwazji bakterii do komórek gospodarza

Title variants
The role of nonfimbrial adhesins: proteins of outer membrane and lipopolysaccharide in adherence and invasion of bacteria to host cells.
Languages of publication
Specific adhesion to host tissue cells is an essential virulence factor of most bacterial pathogens. Adherence is often an essential step in bacterial pathogenesis or infection, required for colonizing a new host. To effectively adhere to host surfaces, many bacteria produce multiple adherence factors called adhesins. There are two types of adhesins: fimbrial and nonfimbrial adhesins. Lipopolysacharide and outer membrane proteins belong to non fimbrial adhesins. The role of LPS in adherence of Gram-negative organisms to host cells has been evaluated for several bacterial species. The O-specific chain of bacteria can lead mostly to an increased tendency for this organism to bind to mammalian cells. The attachment of bacteria could be inhibited by purified LPS. A few receptors responsible for recognizing LPS have been identified: CD 14, scavenger receptor, Toll-like receptors, integrins, selectins. LPS receptors transduce signals from the membrane to the cytosol. Interaction between adhesins and their receptor can lead to invasion to host cells. Adhesins are attractive vaccine candidates because they are often essential to infection and are surface-located, making them readily accessible to antibodies.
Physical description
  • Aderem A., Ulevitch R. J., 2000. Toll-like receptors in the induction of the innate immune response. Nature 406, 782-787.
  • Alfa M. J., Degagne P., 1997. Attachment of Haemophilus ducreyi to human foreskin fibroblasts involves LOS and fibronectin. Microb. Pathog. 22, 39-46.
  • Aspinall G. O., Fujimoto S., Mcdonald A. G., Pang H., Kurjanczyk L. A., Penner J. L., 1994. Lipopolysaccharides from Campylobacter jejuni associated with Guillain-Barre syndrome patients mimic human gangliosides in structure. Infect. Immun. 62, 2122-2125.
  • Azghani A. O., Idell S., Bains M., Hancock R. E., 2002. Pseudomonas aeruginosa outer membrane protein F is an adhesin in bacterial binding to lung epithelial cells in culture. Microb. Pathog. 33, 109-114.
  • Batisson I., Guimond M. P., Girard F., An H., Zhu C., Oswald E., Fairbrother J. M., Jacques M., Harel J., 2003. Characterization of the novel factor paa involved in the early steps of the adhesion mechanism of attaching and effacing Escherichia coli. Infect. Immun. 71, 4516-4525.
  • Belanger M., Dubreuil D., Harel J., Girard C., Jacques M., 1990. Role of lipopolysaccharides in adherence of Actinobacillus pleuropneumoniae to porcine tracheal rings. Infect. Immun. 58, 3523-3530.
  • Belas R., Goldman M., Ashliman K., 1995. Genetic analysis of Proteus mirabilis mutants defective in swarmer cell elongation. J. Bacteriol. 177, 823-828.
  • Benz I., Schmidt M. A., 2001. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol. Microbiol. 40, 1403-1413.
  • Cario E., Rosenberg I. M., Brandwein S. L., Beck P. L., Reinecker H. C., Podolsky D. K., 2000. Lipopolysaccharide activates distinct signaling pathways in intestinal epithelial cell lines expressing Toll-like receptors. J. Immunol. 164, 966-972.
  • Caroff M., Karibian D., Cavaillon J. M., Haeffner-Cavaillon N., 2002. Structural and functional analyses of bacterial lipopolysaccharides. Microbes Infect. 4, 915-926.
  • Carroll P., La Ragione R. M., Sayers A. R., Woodward M. J., 2004. The O-antigen of Salmonella enterica serotype Enteritidis PT4: a significant factor in gastrointestinal colonisation of young but not newly hatched chicks. Vet. Microbiol. 102, 73-85.
  • Cirillo D. M., Heffernan E. J., Wu L., Harwood J., Fierer J., Guiney D. G., 1996. Identification of a domain in Rck, a product of the Salmonella typhimurium virulence plasmid, required for both serum resistance and cell invasion. Infect. Immun. 64, 2019-2023.
  • Cohen P. S., Arruda J. C., Williams T. J., Laux D. C., 1985. Adhesion of a human fecal Escherichia coli strain to mouse colonic mucus. Infect. Immun. 48, 139-145.
  • Dazzo F. B., Truchet G. L., Hollingsworth R. I., Hrabak E. M., Pankratz H. S., Philip-Hollingsworth S., Salzwedel J. L., Chapman K., Appenzeller L., Squartini A., 1991. Rhizobium lipopolysaccharide modulates infection thread development in white clover root hairs. J. Bacteriol. 173, 5371-5384.
  • De Lima Pimenta A., Di Martino P., Le Bouder E., Hulen C., Blight M. A., 2003. In vitro identification of two adherence factors required for in vivo virulence of Pseudomonas fluorescens. Microbes Infect. 5, 1177-1187.
  • De Vinney R., Gauthier A., Abe A., Finlay B. B., 1999. Enteropathogenic Escherichia coli : A pathogen that inserts its own receptor into host cells. Cell Mol. Life Sci. 55, 961-976.
  • Devyatyarova-Johnson M., Rees I. H., Robertson B. D., Turner M. W., Klein N. J., Jack D. L., 2000. The lipopolysaccharide structures of Salmonella enterica serovar Typhimurium and Neisseria gonorrhoeae determine the attachment of human mannose-binding lectin to intact organisms. Infect. Immun. 68, 3894-3899.
  • Di Martino P., Bertin Y., Girardeau J. P., Livrelli V., Joly B., Darfeuille-Michaud A., 1995. Molecular characterization and adhesive properties of CF29K, an adhesin of Klebsiella pneumoniae strains involved in nosocomial infections. Infect. Immun. 63, 4336-4344.
  • Echeverria P., Orskov F., Orskov I., Knutton S., Scheutz F., Brown J. E., Lexomboon U., 1991. Attaching and effacing enteropathogenic Escherichia coli as a cause of infantile diarrhea in Bangkok. J. Infect. Dis. 164, 550-554.
  • Elass-Rochard E., Legrand D., Salmon V., Roseanu A., Trif M., Tobias P. S., Mazurier J., Spik G., 1998. Lactoferrin inhibits the endotoxin interaction with CD14 by competition with the lipopolysaccharide-binding protein. Infect Immun. 66, 486-491.
  • Elsbach P., Weiss J. 1993: The bactericidal/permeability-increasing protein (BPI), a potent element in host-defense against gram-negative bacteria and lipopolysaccharide. Immunobiology. 187, 417-429.
  • Elshourbagy N. A., Li X., Terrett J., Vanhorn S., Gross M. S., Adamou J. E., Anderson K. M., Webb C. L., Lysko P. G., 2000. Molecular characterization of a human scavenger receptor, human MARCO. Eur. J. Biochem. 267, 919-926.
  • Erridge C., Bennett-Guerrero E., Poxton I. R., 2002. Structure and function of lipopolysaccharides. Microbes Infect. 4, 837-851.
  • Everest P., Li J., Douce G., Charles I., De Azavedo J., Chatfield S., Dougan G., Roberts M., 1996. Role of the Bordetella pertussis P.69/pertactin protein and the P.69/pertactin RGD motif in the adherence to and invasion of mammalian cells. Microbiology 142, 3261-3268.
  • Ferrero E., Hsieh C. L., Francke U., Goyert S. M., 1990. CD14 is a member of the family of leucine-rich proteins and is encoded by a gene syntenic with multiple receptor genes. J. Immunol. 145, 331-336.
  • Fink D. L., Cope L. D., Hansen E. J., St. Geme J. W. 3rd, 2001. The Hemophilus influenzae Hap autotransporter is a chymotrypsin clan serine protease and undergoes autoproteolysis via an intermolecular mechanism. J. Biol. Chem. 276, 39492-39500.
  • Fletcher E. L., Fleiszig S. M., Brennan N. A., 1993. Lipopolysaccharide in adherence of Pseudomonas aeruginosa to the cornea and contact lenses. Invest. Ophthalmol. Vis. Sci. 34, 1930-1936.
  • Foxwell A. R., Kyd J. M., Cripps A. W., 1998. Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol. Mol. Biol. Rev. 62, 294-308.
  • Funda D. P., Tuckova L., Farre M. A., Iwase T., Moro I., Tlaskalova-Hogenova H., 2001. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infect. Immun. 69, 3772-3781.
  • Gamian A., Romanowska E., Dabrowski U., Dabrowski J., 1991. Structure of the O-specific, sialic acid containing polysaccharide chain and its linkage to the core region in lipopolysaccharide from Hafnia alvei strain 2 as elucidated by chemical methods, gas-liquid chromatography/mass spectrometry, and 1H NMR spectroscopy. Biochemistry 30, 5032-5038.
  • Gamian A., Romanowska E., Ulrich J., Defaye J., 1992. The structure of the sialic acid-containing Escherichia coli O104 O-specific polysaccharide and its linkage to the core region in lipopolysaccharide. Carbohydr. Res. 236, 195-208.
  • Gamian A., Kenne L., Mieszala M., Ulrich J., Defaye J., 1994. Structure of the Escherichia coli O24 and O56 O-specific sialic-acid-containing polysaccharides and linkage of these structures to the core region in lipopolysaccharides. Eur. J. Biochem. 225, 1211-1220.
  • Gamian A., Jones C., Lipinski T., Korzeniowska-Kowal A., Ravenscroft N., 2000. Structure of the sialic acid-containing O-specific polysaccharide from Salmonella enterica serovar Toucra O48 lipopolysaccharide. Eur. J. Biochem. 267, 3160-3167.
  • Gerhard M., Lehn N., Neumayer N., Boren T., Rad R., Schepp W., Miehlke S., Classen M., Prinz C., 1999. Clinical relevance of the Helicobacter pylori gene for blood-group antigen-binding adhesin. Proc. Natl. Acad. Sci. USA 96, 12778-12783.
  • Gupta S. K., Berk R. S., Masinick S., Hazlett L. D., 1994. Pili and lipopolysaccharide of Pseudomonas aeruginosa bind to the glycolipid asialo GM1. Infect. Immun. 62,4572-4579.
  • Hailman E., Albers J.J., Wolfbauer G., Tu A.Y., Wright S. D., 1996. Neutralization and transfer of lipopolysaccharide by phospholipid transfer protein. J. Biol. Chem. 271, 12172-12178.
  • Henderson I. R., Nataro J. P., 2001. Virulence functions of autotransporter proteins. Infect. Immun. 69, 1231-1243.
  • Hrabak E. M., Urbano M. R., Dazzo F. B., 1981. Growth-phase-dependent immunodeterminants of Rhizobium trifolii lipopolysaccharide which bind trifoliin A, a white clover lectin. J. Bacteriol. 148, 697-711.
  • Hueck C. J., 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Biol. Rev. 62, 379-433.
  • Inohara N., Chamaillard M., Mcdonald C., Nunez G., 2005. NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu. Rev. Biochem. 74, 355-83.
  • Islam A. F., Moss N. D., Dai Y., Smith M. S., Collins A. M., Jackson G. D., 2000. Lipopolysaccharide-induced biliary factors enhance invasion of Salmonella enteritidis in a rat model. Infect. Immun. 68, 1-5.
  • Izhar M., Nuchamowitz Y., Mirelman D., 1982. Adherence of Shigella flexneri to guinea pig intestinal cells is mediated by a mucosal adhesion. Infect. Immun. 35, 1110-1118.
  • Jaques M., Paradis S. E., 1998. Adhesin - receptor interactions in Pasteurellaceae. FEMS Microb. Rev. 22,45-59.
  • Jaques M., Kobisch M., Belanger M., Dugal F., 1993. Virulence of capsulated and noncapsulated isolates of Pasteurella multocida and their adherence to porcine respiratory tract cells and mucus. Infect. Immun. 61, 4785-4792.
  • Jouve M., Garcia M. I., Courcoux P., Labigne A., Gounon P., Le Bouguenec C., 1997. Adhesion to and invasion of HeLa cells by pathogenic Escherichia coli carrying the afa-3 gene cluster are mediated by the AfaE and AfaD proteins, respectively. Infect. Immun. 65, 4082-4089.
  • Kelm S., Schauer R., 1997. Sialic acids in molecular and cellular interactions. Int. Rev. Cytol. 175, 137-240.
  • Kenny B., Lai L. C., Finlay B. B., Donnenberg M. S., 1996. EspA, a protein secreted by enteropathogenic Escherichia coli, is required to induce signals in epithelial cells. Mol. Microbiol. 20, 313-323.
  • Kim J. G., Lee S. J., Kagnoff M. F., 2004. Nod1 is an essential signal transducer in intestinal epithelial cells infected with bacteria that avoid recognition by toll-like receptors. Infect. Immun. 72, 1487-1495.
  • Knutton S., Lloyd D. R., Candy D. C., Mcneish A. S., 1985. Adhesion of enterotoxigenic Escherichia coli to human small intestinal enterocytes. Infect. Immun. 48, 824-831.
  • Koebnik R., Locher K. P., Van Gelder P., 2000. Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol. Microbiol. 37, 239-253.
  • Korzeniowska-Kowal A., Witkowska D, Gamian A., 2001. Mimikra cząsteczkowa bakteryjnych antygenów polisacharydowych i jej rola w etiologii chorób infekcyjnych i autoimmunologicznych. Post. Hig. Med. Dośw. 55, 211-232.
  • Laarmann S., Schmidt M. A., 2003. The Escherichia coli AIDA autotransporter adhesin recognizes an integral membrane glycoprotein as receptor. Microbiology 149, 1871-1882.
  • Labigne-Roussel A., Falkow S., 1988. Distribution and degree of heterogeneity of the afimbrial-adhesin-encoding operon (afa) among uropathogenic Escherichia coli isolates. Infect. Immun. 56, 640-648.
  • Labigne-Roussel A. F., Lark D., Schoolnik G., Falkow S., 1984. Cloning and expression of an afimbrial adhesin (AFA-I) responsible for P blood group-independent, mannose-resistant hemagglutination from a pyelonephritic Escherichia coli strain. Infect. Immun. 46, 251-259.
  • Landmann R., Muller B., Zimmerli W., 2000. CD14, new aspects of ligand and signal diversity. Microbes Infect. 2, 295-304.
  • Licht T. R., Krogfelt K. A., Cohen P. S., Poulsen L. K., Urbance J., Molin S., 1996. Role of lipopolysaccharide in colonization of the mouse intestine by Salmonella typhimurium studied by in situ hybridization. Infect. Immun. 64, 3811-3817.
  • Luck S. N., Bennett-Wood V., Poon R., Robins-Browne R. M., Hartland E. L., 2005. Invasion of Epithelial Cells by Locus of Enterocyte Effacement-Negative Enterohemorrhagic Escherichia coli. Infect. Immun. 73, 3063-3071.
  • Lutwyche P., Rupps R., Cavanagh J., Warren R. A., Brooks D. E., 1994. Cloning, sequencing, and viscometric adhesion analysis of heat-resistant agglutinin 1, an integral membrane hemagglutinin from Escherichia coli O9:H10:K99. Infect. Immun. 62, 5020-5026.
  • Malhotra R., Bird M. I., 1997. L-Selectin--a signalling receptor for lipopolysaccharide. Chem. Biol. 4, 543-547.
  • Malhotra R., Priest R., Foster M. R., Bird M. I., 1998. P-selectin binds to bacterial lipopolysaccharide. Eur. J. Immunol. 28, 983-938.
  • Mammarappallil J. G., Elsinghorst E. A., 2000. Epithelial cell adherence mediated by the enterotoxigenic Escherichia coli tia protein. Infect. Immun. 68, 6595-6601.
  • Marrs C. F., Krasan G. P., Mccrea K. W., Clemans D. L., Gilsdorf J. R., 2001. Haemophilus influenzae - human specific bacteria. Front. Biosci. 6, E41-E60.
  • Mcsweegan E., Walker R. I., 1986. Identification and characterization of two Campylobacter jejuni adhesins for cellular and mucous substrates. Infect. Immun. 53, 141-148.
  • Merino S., Rubires X., Aguilar A., Tomas J. M., 1997. The role of O1-antigen in the adhesion to uroepithelial cells of Klebsiella pneumoniae grown in urine. Microb. Pathog. 23, 49-53.
  • Moore K. J., Andersson L. P., Ingalls R. R., Monks B. G., Li R., Arnaout M. A., Golenbock D. T., Freeman M. W., 2000. Divergent response to LPS and bacteria in CD14-deficient murine macrophages. J. Immunol. 165, 4272-4280.
  • Mroczenski-Wildey M. J., Di Fabio J. L., Cabello F. C., 1989. Invasion and lysis of HeLa cell monolayers by Salmonella typhi: the role of lipopolysaccharide. Microb. Pathog. 6, 143-152.
  • Nataro J. P., Kaper J. B., 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11, 142-201.
  • Nesper J., Schild S., Lauriano C. M., Kraiss A., Klose K. E., Reidl J., 2002. Role of Vibrio cholerae O139 surface polysaccharides in intestinal colonization. Infect. Immun. 70, 5990-5996.
  • Netea M. G., Van Deuren M., Kullberg B. J., Cavaillon J. M., Van Der Meer J. W., 2002. Does the shape of lipid A determine the interaction of LPS with Toll-like receptors? Trends Immunol. 23, 135-139.
  • Noel K. D., Forsberg L.S., Carlson R. W., 2000. Varying the abundance of antigen in Rhizobium etli and its effect on symbiosis with Phaseolus vulgaris. J. Bacteriol. 182, 5317-5324.
  • Palomar J., Leranoz A. M., Vinas M., 1995. Serratia marcescens adherence: the effect of O-antigen presence. Microbios. 81, 107-113.
  • Parent J. B., 1990. Membrane receptors on rat hepatocytes for the inner core region of bacterial lipopolysaccharide. J. Biol. Chem. 265, 3455-3461.
  • Paton A. W., Srimanote P., Woodrow M. C., Paton J. C., 2001. Characterization of Saa, a novel autoagglutinating adhesin produced by locus of enterocyte effacement-negative Shiga-toxigenic Escherichia coli strains that are virulent for humans. Infect. Immun. 69, 6999-7009.
  • Perera P., Mayadas T. N., Takeuchi O., Akira S., Zaks-Zilberman M., Goyert S. M., Vogel S. N., 2001. CD11b/CD18 acts in concert with CD14 and Toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J. Immun. 9, 574-581.
  • Pfeiffer R., 1894. Weitere Untersuchungen ueber das Wesen der Choleraimmunitat und ueber specifisch baktericide Processe. Ztschr. f. Hyg. u. Infektionskrankh. 18, 1-16.
  • Pier G. B., Grout M., Zaidi T. S., 1997. Cystic fibrosis transmembrane conductance regulator is an epithelial cell receptor for clearance of Pseudomonas aeruginosa from the lung. Proc. Natl. Acad. Sci. USA 94, 12088-12093.
  • Pier G. B., Grout M., Zaidi T., Meluleni G., Mueschenborn S. S., Banting G., Ratcliff R., Evans M. J., Colledge W. H., 1998. Salmonella typhi uses CFTR to enter intestinal epithelial cells. Nature 393, 79-82.
  • Poltorak A., Ricciardi-Castagnoli P., Citterio S., Beutler B., 2000. Physical contact between lipopolysaccharide and toll-like receptor 4 revealed by genetic complementation. Proc. Natl. Acad. Sci. USA 97, 2163-2167.
  • Prasadarao N. V., Wass C. A., Kim K. S., 1996. Endothelial cell GlcNAcβ1-4GlcNAc epitopes for outer membrane protein A enhance traversal of Escherichia coli across the blood-brain barrier. Infect. Immun. 64, 154-160.
  • Raeburn C. D., Calkins C. M., Zimmerman M. A., Arya J., Barsness K. A., Harken A. H., 2002. Toll-like receptors and surgical disease. Surgery 131, 477-483.
  • Reddy M. S., Bernstein J. M., Murphy T. F., Faden H. S., 1996. Binding between outer membrane proteins of nontypeable Haemophilus influenzae and human nasopharyngeal mucin. Infect. Immun. 64, 1477-1479.
  • Reeves P., 1995. Role of O-antigen variation in the immune response. Trend. Microbiol. 3, 381-386.
  • Rosenshine I., Ruschkowski S., Finlay B. B., 1996. Expression of attaching/effacing activity by enteropathogenic Escherichia coli depends on growth phase, temperature, and protein synthesis upon contact with epithelial cells. Infect. Immun. 64, 966-973.
  • Schletter J., Heine H., Ulmer A. J., Rietschel E. T., 1995. Molecular mechanisms of endotoxin activity. Arch. Microbiol. 164, 383-389.
  • Shimazu R., Akashi S., Ogata H., Nagai Y., Fukudome K., Miyake K., Kimoto M., 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189, 1777-1782.
  • Spears P. A., Temple L. M., Orndorff P. E., 2000. A role for lipopolysaccharide in turkey tracheal colonization by Bordetella avium as demonstrated in vivo and in vitro. Mol. Microbiol. 36, 1425-1435.
  • Sperandio V., Giron J. A., Silveira W. D., Kaper J. B., 1995. The OmpU outer membrane protein, a potential adherence factor of Vibrio cholerae. Infect. Immun. 63, 4433-4438.
  • St. Geme J. W. 3rd, 1994. The HMW1 adhesin of nontypeable Haemophilus influenzae recognizes sialylated glycoprotein receptors on cultured human epithelial cells. Infect. Immun. 62, 3881-3889.
  • St. Geme J. W. 3rd, Cutter D., 2000. The Haemophilus influenzae Hia adhesin is an autotransporter protein that remains uncleaved at the C terminus and fully cell associated. J. Bacteriol. 182, 6005-6013.
  • Stevens M. P., Van Diemen P. M., Frankel G., Phillips A. D., Wallis T. S., 2002. Efa1 influences colonization of the bovine intestine by shiga toxin-producing Escherichia coli serotypes O5 and O111. Infect. Immun. 70, 5158-5166.
  • Takeda K., Akira S., 2005. Toll-like receptors in innate immunity. Int. Immunol. 17, 1-14.
  • Tapping R. I., Akashi S., Miyake K., Godowski P. J., Tobias P. S., 2000. Toll-like receptor 4, but not toll-like receptor 2, is a signaling receptor for Escherichia and Salmonella lipopolysaccharides. J. Immunol. 165, 5780-5787.
  • Tarr P. I., Bilge S. S., Vary J. C., Jelacic S., Habeeb R. L., Ward T. R., Baylor M. R., Besser T. E., 2000. Iha: a novel Escherichia coli O157:H7 adherence-conferring molecule encoded on a recently acquired chromosomal island of conserved structure. Infect. Immun. 68, 1400-1407.
  • Torres A. G., Kaper J. B., 2003. Multiple elements controlling adherence of enterohemorrhagic Escherichia coli O157:H7 to HeLa cells. Infect. Immun. 71, 4985-4995.
  • Triantafilou M., Triantafilou K., 2004. Heat-shock protein 70 and heat-shock protein 90 associate with Toll-like receptor 4 in response to bacterial lipopolysaccharide. Biochem. Soc. Trans. 32, 636-639.
  • Van Amersfoort E. S., Van Berkel T. J., Kuiper J., 2003. Receptors, mediators, and mechanisms involved in bacterial sepsis and septic shock. Clin. Microbiol. Rev. 16, 379-414.
  • Van Bossuyt H., De Zanger R. B., Wisse E., 1988. Cellular and subcellular distribution of injected lipopolysaccharide in rat liver and its inactivation by bile salts. J. Hepatol. 7, 325-337.
  • Weiser J. N., Gotschlich E. C., 1991. Outer membrane protein A (OmpA) contributes to serum resistance and pathogenicity of Escherichia coli K-1. Infect. Immun. 59, 2252-2258.
  • Wilkinson S. G., 1996. Bacterial lipopolysaccharides-themes and variations. Prog. Lipid Res. 35, 283-343.
  • Witkowska D., Bartyś A., Gamian A., 2009. Białka osłony komórkowej pałeczek jelitowych i ich udział w patogenności oraz odporności przeciwbakteryjnej. Post. Hig. Med. Dośw. 63, 176-199.
  • Wright S. D., Ramos R. A., Tobias P. S., Ulevitch R. J., Mathison J. C., 1990. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249, 1431-1433.
  • Zaidi T. S., Fleiszig S. M., Preston M. J., Goldberg J. B., Pier G. B., 1996. Lipopolysaccharide outer core is a ligand for corneal cell binding and ingestion of Pseudomonas aeruginosa. Invest. Ophthalmol. Vis. Sci. 37, 976-986.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.