Preferences help
enabled [disable] Abstract
Number of results
2010 | 59 | 1-2 | 151-160
Article title

β-glukan drożdży saccharomyces cerevisiae - naturalny stymulator układu immunologicznego

Title variants
β-Glucan from Saccharomyces cerevisiae - the natural stimulator of immune system
Languages of publication
In resent years, increased attention has been paid to b-glucans isolated from the cell walls of fungi that act as nonspecific modulators of immune system. b-glucan, a cell wall polysaccharide in many microorganism, fungi and algae, is a well- known biological response modifier (BRM). The cell wall of Saccharomyces cerevisiae consists of approximately 29-64% b-glucans. b-glucan from Saccharomyces cerevisiae possesses the strong positive influence on the immune system, resulting in antibacterial, wound-healing and antitumor activities. It is known that the immunomodulatory effects of b-glucans are influenced by their degree of branching, polymer lengths and tertiary structure. Most fungal b-glucans exhibit immunomodulatory activity when administered intravenously or intraperitoneally. b-glucan may directly activate cells, stimulating their phagocytic and antimicrobial activities, including the production of reactive intermediates and proinflammatory mediators, cytokines and chemokines. b-glucan receptor activity has subsequently been reported on a variety of other leukocytes, including macrophages, neutrophils, eosinophils and NK cells, as well as on nonimmune cells including endothelial cells, alveoral epithelial cells and fibroblasts. In addition to these, b-glucan also exhibits antioxidative capabilities. It is one of natural substances, known as antioxidants, which are able to protect living organisms from the attack of reactive radical species and in this way to decrease the risk of several diseases.
Physical description
  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Katedra Biochemii Ogólnej, Uniwersytet Łódzki, Banacha 12/16, 90-237 Łódź, Polska
  • Akarmiene D., Anatolijus K., Didziapetriene J., Keveleitis E., 2007. Effects of β-glucans on the immune system. Medicina (Kaunas) 43, 597-606.
  • Babineau T. J., Marcello P., Swails W., Kenler A., Bistrian B., Forse R. A., 1994. Randomized phase I/II trial of a macrophage-specific immunomodulator (PGG-glucan) in high-risk surgical patients. Ann. Surg. 220, 601-609.
  • Brown G. D., Gordon S., 2001. Immune recognition. A new receptor for beta-glucans. Nature 413, 36-37.
  • Brown G. D., Taylor P. R., Reid D. M., Willment J. A., Williams D. L., Martinez-Pomares L., Wong S. Y., Gordon S., 2002. Dectin-1 as a major beta-glucan receptor on macrophages. J Exp. Med.196, 407-12.
  • Bułhak-Jachymczyk B., Niedźwiecka-Kącik D., Panczenko-Kresowska B., Wartowicz M., Ziemlański S., 2001. Normy żywienia człowieka - fizjologiczne podstawy. Wydawnictwo Lekarskie PZWL 1, 78-432.
  • Compton R., Williams D., Browder W., 1996. The beneficial effect of enhanced macrophage function on the healing of bowel anastomoses. Am Surg. 62, 10-14.
  • Cumming J. H., Macfarlane G. T., Englyst H. N., 2001. Prebiotic digestion and fermentation. Am. J Clin. Nutr. 73, 415-420.
  • Gordon D., Gordon B. S., 2003. Fungal β-glucans and Mammalian Immunity. Immunity 19, 311-315.
  • Greenwald P., Clifford C. K., Milner J. A., 2001. Diet and cancer prevention. Eur. J. Cancer 37, 948-965.
  • Griendling K. K., Fitzgerald G. A., 2003. Oxidative stress and cardiovascular injury. Circulation 108, 1912-1916.
  • Guengerich F. P., 2000. Metabolism of chemical carcinogens. Carcinogenesis 21, 345-351.
  • Hasik J., 2001. Usprawnienia dietetyczne procesów metabolicznych. Co to są witaminy? Postępy Fitoterapii 6, 9-11.
  • Hofer M., Pospisil M., 1997. Glucan as stimulator of hematopoiesis in normal and gamma-irradiated mice. Int J Immunopharmac. 19, 607-609.
  • Hong F., Hansem D., Yan J., Allendorf D. J., Baran J. T., 2003. β-glucan functions as an adjuvant for monoclonal antibody immunotherapy by recruiting tumoricidal granulocytes as killer cells. Cancer'es 63, 9023-31.
  • Hortobagyi G. N., Piccatr M. J., 1999. Current management of advanced breast cancer. Semin Oncol 23, 1-5.
  • Kardosova A., Machova E., 2006. Antioxidant activity of medicinal plant polysaccharides. Fitoterapia 77, 367-373.
  • Kim G. Y., Choi G. S., Lee S. H., Park Y. M., 2004. Acidic polysaccharide isolated from Phellinus linteus enhances through the upregulation of nitric oxide and tumor necrosis factor-alpha from peritoneal macrophages. J. Ethnopharamacol. 95, 69-76.
  • Kogan G., Stasko A., Bauerova K., Polonka M., 2005. Antioxidant properties of yeast (1à3)- β-D-glucan studied by electron paramagnetic resonance spectroscopy and its activity in the adjuvant arthritis. Carbohydrate Polymers 61, 18-28.
  • Kumprechtova D., Illek J., 2007. Effect of Saccharomyces cerevisiae on performance and metabolic profile of calves. Rev. Rom. Med. Vet. 17, 2.
  • Laroche C., Michaud P., 2007. New developments and prospective applications for β (1,3) glucans. Recent Patents Biotechnol. 1, 59-73.
  • Li J., Xing J., Li D., Wang X., Zhao L., Ly S., Huang D., 2005. Effects of beta-glucan extracted from Saccharomyces cerevisiae on humoral and cellular immunity in weaned piglets. Arch. Anim. Nutr. 59, 303-312.
  • Magnelli P., Cipollo J. F., Abeijon C., 2002. A refined method for the determination of Saccharomyces cerevisiae cell wall composition and β-1,6-glucan fine structure. Anal. Biochem. 301, 136-50.
  • Makowska-Wąs J., Jeneczko Z., 2004. Bioavailability of plant polyphenols. Postępy Fitoterapii 13, 3.
  • Manners D. J., Masson A. J., Patterson J. C., 1973. The structure of a β-(1à3)-D-glucan from yeast cell walls. Biochem. J. 135, 19-30.
  • MI S. J., Sung E K., Young H. J., Lee M. E., Kim H. M., Sang G. P., Lee H., 2007. Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptid. Cell 130, 1071-1082.
  • Palma A. S., Feizi T., Zhang Y., Stoll M. D., Lawson A. M., Gordon D. Brown., 2006. Ligands for the β-glucan receptor, Dectin-1, assigned using 'designer' microarrays of oligosaccharide Probes (neoglycolipids) generated from glucan polysaccharides. J Biol. Chem. 281, 5771-5779.
  • Pelizon A. C., Kaneno R., Soares A. M., Merina D .A., Satori A., 2005. Immunomodulatory activities associated with beta-glucan derived from Saccharomycaes cerevisiae. Physiol. Res. 54, 557-564.
  • Sadula J., Kogan G., Kacurkova M., Machova E., 1999. Microbial (1à3)-β-D-glucans, their preparation, physico-chemical characterization and immunomodulatory activity. Carbohydrate Polymers 38, 247-253.
  • Sieja K., 2004. Dieta sojowa w zmniejszeniu ryzyka raka piersi. Ginekologia Praktyczna 76, 23-28.
  • Silke C. J., Rohn S., Kroch L. W., Kurz T., 2007. In Vitro Potential Antioxidant Activity of β-(1,3)(1,6)-D-glucan and protein fractions from Saccharomyces cerevisiae cell walls. Agric Food Chem. 55, 4710-4716.
  • Socha J., Stolarczyk A., 2002. Prebiotyki i probiotyki jako przykład żywnośći funkcjonalnej. Pediatria Współczesna. Gastroenterologia, Hepatologia i żywienie dziecka 1, 15-18.
  • Sroka Z., Gamian A., Cisowski W., 2005. Low- molecular antioxidant compounds of natural origin. Postępy Hig. Med. Dośw. 59, 34-41.
  • Szumiało J., 2005. Protocatechuic acid in cancer prevention. Postępy Hig. Med. Dośw. 59, 608-615.
  • Szymańska-Czerwińska M., Bednarek D., 2007. Betaglukany alternatywą antybiotykowych stymulatorów wzrostu. Życie Weterynaryjne 82, 842-843.
  • Trafalska E., Grzybowski A., 2006. Probiotics and prebiotics in prevention of chronic civilization diseases. New Medicine 1, 3-6.
  • Tseng T. H., Hsuj D., Lo M. H., Chu C. Y., Chou F. P., Huang C. L., Wang C. J., 1998. Inhibitory effect of Hibiscus protocatechuic acid on tumor promotion in mouse skin. Cancer Lett. 126, 199-207.
  • Tsiapali E., Whaley S., Kalbfleisch J., Ensley H. E., Browder. W., Williams D. L., 2001. Glucans exhibit weak antioxidant activity, but stimulate macrophage free radical activity. Free Rad. Biol. Med. 30, 393-402.
  • Vetvicka V., Yu X., Yan J., Hanikryrova M., Mayadas T., Gordon D., 1999. The β-glucan-binding Lectin site of Mouse CR3 (CD11b/CD18) and its function in generating a primed state of the Receptor that mediates cytotoxic activation in response to iC3b-opsonized target cells. J Immunol. 162, 2281-2290.
  • Wei D., Zhang L., Williams D. L., Browder W., 2002. Glucan stimulates human dermal fibroblast collagen biosynthesis through a nuclear factor-1 dependent mechanism. Published Online 10, 161-168.
  • Wolska-Mitaszko B., 1985. Metabolizm polimerów ściany komórkowej drożdży. I.Metabolizm glukanów. Postępy Mikrobiologii 24, 187-208.
  • Wolski T., Karwat I. D., 2004. Prophylaxis and therapy for the effect of incorrect nutrition. Postępy Fitoterapii 14, 4.
  • Wójcik R., Małaczewska J., Trapkowska S., Siwicki A. K., 2007. Influence of β-1,3/1,6-D-glucan on non-specific cellular defense mechanisms in lambs. Med. Vet. 63, 84-86.
  • Yadav M., Schorey J. S., 2006. The beta-glucan receptor dectin-1 functions together with TLR2 to mediate macrophage activation by mycobacteria. Blood 108, 3168-3176.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.