PL EN


Preferences help
enabled [disable] Abstract
Number of results
Journal
2009 | 58 | 1-2 | 89-95
Article title

Czy jesteśmy scale-free?

Content
Title variants
EN
Are we scale-free
Languages of publication
PL EN
Abstracts
EN
This article describes the scale-free property of biological networks. In practice, a scale-free network can be constructed by progressively adding nodes to an existing network by introducing new links to the existing nodes using preferential attachment mechanism. Are biological networks scale free? Is it an impact of universal mysterious power law on biological networks architecture?
Keywords
Journal
Year
Volume
58
Issue
1-2
Pages
89-95
Physical description
Dates
published
2009
Contributors
  • Instytut Biochemii i Biofizyki PAN, Pawińskiego 5a, 02-106 Warszawa, Polska
References
  • Albert R., Jeong H., Barabasi A. L., 1999. Diameter of the world-wide web. Science 401, 130-131.
  • Aloy P., Russell R. B., 2004. Taking the mystery out of biological networks. EMBO Rep. 5, 349-350.
  • Barabasi A. L., Albert R., 1999. Emergence of scaling in random networks. Science 286, 509-512.
  • Erdos P., Renyi A., 1959. On Random Graphs. I. Publicationes Mathematicae 6, 290-297.
  • Erdos P., Renyi A., 1960. The evolution of Random Graphs. Magyar Tud. Akad. Mat. Kutato Int. Kozl. 5, 17-61.
  • Jeong H., Tombor B., Albert R., Oltvai Z. N., Barabasi A. L., 2000. The large-scale organization of metabolic networks. Nature 407, 651-654.
  • Khanin R, Wit E., 2006. How scale-free are biological networks. J. Comput. Biol. 13, 810-8.
  • Li L., Alderson D., Doyle J. C., Willinger W., 2005. Towards a Theory of Scale-Free Graphs: Definition, Properties, and Implications. >Internet Math. 2, 431-523.
  • Magwene P., Kim J., 2004. Estimating genomic coexpression networks using first-order conditional independence. Genome Biology 5, R100.
  • Matsubara T., 2006. Statistics and Dynamics in the Large-scale Structure of the Universe. J. Physics: Conference Series 31, 27-34.
  • Noort V., Snel B., Huynen M. A., 2004. The yeast coexpression network has a small-world, scale-free architecture and can be explained by a simple model. EMBO Rep. 5, 280-284.
  • Pawlowski P. H., Kaczanowski S., Zielenkiewicz P., 2008. Protein interaction network. Double exponential model. JPB 1, 061-067.
  • Song C., Havlin S., Makse H. A., 2005. Self-similarity of complex networks. Nature 433, 392-395.
  • Tong A. H., Lesage G., Bader G. D., Ding H., Xu H., Xin X., Young J., Berriz G. F., Brost R. L., Chang M. i współaut., 2004. Global mapping of the yeast genetic interaction network. Science 303, 808-813.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-ksv58p89kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.