Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 3-4 | 529-545
Article title

Wielkie wymierania i ich przyczyny

Title variants
Mass extinctions and their causes
Languages of publication
Mass extinctions are relatively brief interval of geologic time distinguished by a distinctive increase in the extinction rate experienced by more than one geographically wide-spread higher taxon, resulting in a transient drop of the global biodiversity (and several other ecosystem perturbations, including carbon cycling). Macroevolutionary role of the catastrophic events has attracted an enormous attention, but this is involved in many highly controversial natters. The incompleteness and biases of the fossil record are comprehensively discussed recently for the global diversity statistics, but, as shown by sampling standardization and more reliable counting strategies, they do not essentially obscure recognizing peaks of extinction rate. On the other hand, other metrics of past loss of evolutionary history are requested, as well as more common application of phylogenetic approaches. Information on biological selectivity must be combined with regional environmental and geographic patterns to indentify the actual complexity of extinction events and ways of the ecosystem recovery, also in the context of ongoing biodiversity crisis promoted by the anthropogenic greenhouse effect. Even the "big five" mass extinctions are certainly heterogeneous group in effect and in cause, and primary kill mechanisms are still conjectural. Volcanic greenhouse scenario, with a stimulating role for CO2 emissions and release of methane from gas hydrate reservoirs due to the eruption of large igneous provinces, seems to be an emerging paradigm in place of so previously highlighted impact theory. Volcanism → global warming → oceanic anoxia → mass extinction model is therefore currently seen as a main determining factor in the biosphere history.
Physical description
  • Instytut Paleobiologii PAN, Twarda 51/55, 00-818 Warszawa, Polska
  • Ager D. 1993. The New Catastrophism. The Importance of Rare Events in Geological History. Cambridge Univ. Press, Cambridge.
  • Alroy J., 2008. Dynamics of origination and extinction in the marine fossil record. Proc. Natl. Acad. Sci. USA 105 (Suppl. 1), 11536-11542.
  • Alroy J., Aberhan M., Bottjer D. J., Foote M., Fürsich F. T., Harries P. J., Hendy A. J. W., Holland S. M., Ivany L. C., Kiessling W., Kosnik M. A., Marshall C. R., McGowan A.J., Miller A. I., Olszewski T. D. i współaut., 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97-100.
  • Alvarez L. W., Alvarez W., Asaro F., Michel H., 1980 Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208, 1095-1108.
  • Alvarez W., 2003. Comparing the evidence relevant to impact and flood basalt at times of major mass extinctions. Astrobiology 3, 153-161.
  • Bailer-Jones C. A. L., 2009. The evidence for and against astronomical impacts on climate change and mass extinctions: a review. Int. J. Astrobiology 8, 213-219. /~calj/astimpact_ija.pdf
  • Bambach R. K., 2006. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet. Sci. 34, 127-155.
  • Bambach R. K., Bush A. M., Erwin D. H., 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50, 1-22.
  • Benton M. J., 2009a. The fossil record: biological or geological signal? [W:] The Paleobiological Revolution: Essays on the Growth of Modern Paleontology. Sepkoski D., Ruse M. (red.). Univ. Chicago Press, Chicago, 43-59.
  • Benton M. J., 2009b. The Red Queen and the Court Jester: species diversity and the role of biotic and abiotic factors through time. Science 323, 728-732.
  • Brusatte S. L., Benton M. J., Ruta M., Lloyd G. T., 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321, 1485-1488.
  • Cather S. M., Dunbar N. W., Mcdowell F. W., Mcintosh W. C., Scholle P. A., 2009. Climate forcing by iron fertilization from repeated ignimbrite eruptions: the icehouse-silicic large igneous province (SLIP) hypothesis. Geosphere 5, 315-324.
  • Courtillot V., 1999. Evolutionary Catastrophes: The Science of Mass Extinction. Cambridge Univ. Press, Cambridge.
  • Courtillot V. E., Renne R., 2003. On the ages of flood basalt events. C.R. Geosci., 335, 113-140.
  • Darwin K., 2009. O powstawaniu gatunków. Wydawnictwo Uniwersytetu Warszawskiego, Warszawa.
  • Dzik J., 2003. Dzieje życia na Ziemi. Wprowadzenie do paleobiologii. Wyd. III. PWN, Warszawa.
  • Dzik J., Niedźwiedzki G., Sulej T., 2008. Zaskakujące uwieńczenie ery gadów ssakokształtnych. Ewolucja, Biuletyn Muzeum Ewolucji Instytutu Paleobiologii PAN 3, 2-21.
  • Erwin D. H., 2008. Extinction as the loss of evolutionary history. Proc. Natl. Acad. Sci. USA 105, Supplement 1, 11520-11527.
  • Erwin D. H., 2009. Climate as a driver of evolutionary change. Current Biol. 19, R575-R583.
  • Ganino C., Arndt. N. T., 2009. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323-326.
  • Hallam A., Wignall P. B., 1997. Mass Extinctions and their Aftermath. Oxford Univ. Press, Oxford.
  • Hallam A., Wignall P. B., 1999. Mass extinctions and sea-level changes. Earth-Sci. Rev. 48, 217-250.
  • Hallam T. 2006.Ewolucja i zagłada. Wielkie wymieranie i jego przyczyny. Prószyński i S-ka, Warszawa.
  • Hoffman A. 1997. Wokół ewolucji. Wyd. II. PIW, Warszawa.
  • Hołdys A. 2007. Ziemia ugotowana na twardo. Polityka 41, 114-116.
  • Hough M. L., Shields G. A., Evins L. Z., Strauss H., Henderson R. A., Mackenzie S., 2006. A major sulphur isotope event at c. 510 Ma: a possible anoxia-extinction-volcanism connection during the Early-Middle Cambrian transition? Terra Nova 18, 257-263.
  • Jablonski D., 2002. Survival without recovery after mass extinctions. Proc. Natl. Acad. Sci. USA 99, 8139-8144.
  • Jablonski D., 2005. Mass extinctions and macroevolution. Paleobiology 31, 192-210.
  • Jablonski D., 2008. Extinction and the spatial dynamics of biodiversity Proc. Natl. Acad. Sci. USA 105 (Suppl. 1), 11528-11535.
  • Kiessling W., 2008. Sampling-standardized expansion and collapse of reef building in the Phanerozoic. Fossil Record 11, 7-18.
  • Knoll A. H., Bambach R. K., Payne J. L., Pruss S., Fischer W. W., 2007. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295-313.
  • Machalski M., Jagt J. W. M., Heinberg C., Landman N. H., Håkansson E., 2009. Dańskie amonity - obecny stan wiedzy i perspektywy badań. Przegl. Geol. 57, 486-493.
  • McElwain J.C., Punyasena S. W., 2007. Mass extinction events and the plant fossil record. Trends Ecol. Evol. 22, 548-557.
  • McGhee G. R., Sheehan P. M., Bottjer D. J., Droser M. L., 2004. Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr., Palaeoclimatol., Palaeoecol. 211, 289-297.
  • Payne J. L., Finnegan S., 2006. Controls on marine animal biomass through geological time. Geobiology 4, 1-10.
  • Phipps Morgan J., Reston T. J., Ranero C. R., 2004. Contemporaneous mass extinctions, continental flood basalts, and 'impact signals': are mantle plume-induced lithospheric gas explosions the causal link? Earth Planet. Sci. Lett. 217, 263-284.
  • Pörtner H. O., 2008. Ecosystem effects of ocean acidi­fication in times of ocean warming: a physiologist's view. Mar. Ecol. Prog. Ser. 373, 203-217.
  • Purvis A., 2008. Phylogenetic approaches to the study of extinction. Annu. Rev. Ecol. Evol. Syst. 39, 301-319.
  • Racki G., 1999. Kontrowersje wokół przyczyn wielkich katastrof ekologicznych w historii Ziemi: podsumowanie debaty. Przegl. Geol. 47, 343-348.
  • Racki G., Wignall P. B., 2005. Late Permian double-phased mass extinction and volcanism: an oceanographic perspective. [W:] Understanding Late Devonian and Permian-Triassic Biotic and Climatic Events: Towards an Integrated Approach. Over J. Morrow J., Wignall P. B. (red.). Developments in Paleontology and Stratigraphy 20, Elsevier, Amsterdam, 263-297.
  • Raup D. M.,1992. Extinction: Bad Genes or Bad Luck? W. W. Norton & Co, Nowy Jork.
  • Raup D. M., Sepkoski J. J., 1982. Mass extinctions in the marine fossil record. Science 215, 1501-1503.
  • Sepkoski J. J., Bambach R. K., Raup D. M., Valentine J. W., 1981. Phanerozoic marine diversity and the fossil record. Nature 293, 435-437.
  • Stanley S. M., 2005. Historia Ziemi. Wyd. II. PWN, Warszawa.
  • Smith A. B., 2007. Marine diversity through the Phanerozoic: problems and prospects. J. Geol. Soc. Lond. 164, 731-745.
  • Twitchett R. J., 2001. Incompleteness of the Permian-Triassic fossil record: a consequence of productivity decline? Geol. J. 36, 341-353.
  • Urbanek A., 1993. Biotic crises in the history of Upper Silurian graptoloids: a paleobiological model. Hist. Biol. 7, 29-50.
  • Vermeij G. J., 2004. Nature: An Economic History. Princeton Univ. Press., Princeton, NJ.
  • Wall P. D., Ivany L. C., Wilkinson B. H., 2009. Revisiting Raup: exploring the influence of outcrop area on diversity in light of modern sample-standardization techniques. Paleobiology 35, 146-167.
  • Walliser O. H., 1996. Global Events and Event Stratigraphy in the Phanerozoic. Springer-Verlag. Berlin.
  • Ward P. D., 2007. Under a Green Sky: Global Warming, the Mass Extinctions of the Past, and What They Can Tell Us About Our Future. Harper Collins Publ., Nowy Jork.
  • Weiner J., 2006. Życie i ewolucja biosfery. Wyd. II. PWN, Warszawa
  • Wignall P. B., 2005. The link between large igneous province eruptions and mass extinctions. Elements 1, 293-297.
  • Wignall P. B., 2007. The end-Permian mass extinction - how bad did it get? Geobiology 5, 303-309.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.