Preferences help
enabled [disable] Abstract
Number of results
2009 | 58 | 3-4 | 501-528
Article title

Hipotezy o powstaniu i wczesnej ewolucji życia

Title variants
Hypotheses about the origin and early evolution of life
Languages of publication
The current status of the research concerning the origin and early evolution of life on Earth is discussed. In contrast to popular opinion, Charles Darwin never speculated about the origin of life on Earth and regarded such attempts as hopeless. However, nowadays the topic is studied intensively and during recent decades several important results have been obtained. New geological data reveal that Earth became habitable as early as 4.4 billions years before present; indeed, the first biogeochemical and paleontological findings indicate for some advanced biological activity already 3.8-3.5 billions years before now. Phylogenomic analyses allowed to envisage the last common universal ancestor (LUCA) of all extant organisms as a population of microorganisms engaged in horizontal gene transfer, not later than some 2 billions years ago. Two major theoretical scenarios of life origin and early evolution are being currently developed and their predictions experimentally tested: (1) "cool primeval soup" or "heterotrophic" theory, rooted in Oparin-Haldane hypothesis and in early experiments by S.L. Miller, proposing that life has developed in slightly reducing atmosphere and ocean, originally utilizing the deposits of organic matter which was produced in some abiotic processes; (2) "hot pizza" or "autotrophic" theory postulates that life originated at hydrothermal vents, from the very beginning exploiting autotrophically mineral substrates and redox potential. Neither of the theories suffices to explain how large macromolecules capable of self-replication and metabolism developed, although the next step of early life evolution, the "RNA world" seems to be better supported experimentally, including a successful synthesis, in "prebiotic" conditions, an active pirymidyne nucleotide, a functioning artificial protocell, and an autocatalytic rybosyme system capable of exponential growth and evolution. Yet, it is still poorly understood how the alleged RNA world could possibly evolve into the "DNA-protein world".
Physical description
  • Abramov O., Mojzsis S. J., 2009. Microbial habitability of the Hadean Earth during the late heavy bombardment. Nature 459, 419-422. (doi:10.1038/nature08015).
  • Adamala K., Pikuła S., 2004. Hipoteteyczna rola autokatalitycznych właściwości kwasów nukleinowych w procesie biogenezy. Kosmos 53, 123-131.
  • Alterman W., Kaźmierczak J., 2003. Archean microfossils: a reappraisal of early life on Earth. Res. Microbiol. 154, 611-617.
  • Bada J. L., 2004. How life began on Earth: a status report. Earth Planet. Sci. Lett. 226, 1-15. (doi:10.1016/j.epsl.2004.07.036).
  • Bada J. L., 2009. Enantiomeric excesses in the Murchison meteorite and the origin of homochirality in terrestrial biology. Proc. Natl. Acad. Sci. USA 106, 85. (doi:10.1073 pnas.0906490106).
  • Bada J. L., Miller S. L., 1987. Racemization and the origin of optically active organic compounds in living organisms. BioSystems 20, 21-26.
  • Bada J. L., Bigham C., Miller S. L., 1994. Impact Melting of Frozen Oceans on the Early Earth: Implications for the Origin of Life. Proc. Natl. Acad. Sci. USA 91, 1248-1250. (doi:10.1073/pnas.91.4.1248).
  • Bada J. L., Fegley Jr. B., Miller S. L., Lazcano A., Cleaves H. J., Hazen R. M., Chalmers J., 2007. Debating evidence for the origin of life on Earth. Science 315, 937-938.
  • Bailey J., 2001. Astronomical sources of circularly polarized light and the origin of homochirality. Orig. Life Evol. Biosph. 31, 167-183.
  • Bapteste E., O'Malley M. A., Beiko R. G., Ereshefsky M., Gogarten J. P., Franklin-Hall L., Lapointe F.-J., Dupré J., Dagan T., Boucher Y., William Martin W., 2009. Prokaryotic evolution and the tree of life are two different things. Biol. Direct 4, 34. (doi:10.1186/1745-6150-4-34).
  • Baross J. A., Hoffman S. E., 1985. Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Orig. Life Evol. Biosph. 15, 327-345.
  • Barton N., Briggs D. E. G., Eisen J. A., Goldstein D. B., Patel N. H., 2007. Evolution. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
  • Bernal J. D., 1951. The Physical Basis of Life, London, Routledge & Kegan Paul.
  • Bernstein M., 2006. Prebiotic materials from on and off the early Earth. Phil. Trans. R. Soc. B 361, 1689-1702. (doi:10.1098/rstb.2006.1913).
  • Boussau B., Blanquart S., Necsulea A., Lartillot N., Gouy M., 2008. Parallel adaptations to high temperatures in the Archaean eon. Nature 456, 942-946. (doi:10.1038/nature07393).
  • Brasier M., McLoughlin C.,Green O., Wacey D., 2006. A fresh look at the fossil evidence for early Archaean cellular life. Phil. Trans. R. Soc. B 361, 887-902. (doi:10.1098/rstb.2006.1835).
  • Breslow R., Cheng Z.-L., 2009. On the origin of terrestrial homochirality for nucleosides and amino acids. Proc. Natl. Acad. Sci. USA 106, 9144-9146. (doi:10.1073 pnas.0904350106).
  • Brocks J. J., Logan G. A., Buick R., Summons R. E., 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033-1036.
  • Brown J. R., Doolittle W. F., 1999. Gene descent, duplication, and horizontal transfer in the evolution of glutamyl- and glutaminyl-tRNA synthetases. J. Mol. Evol. 49, 485-495.
  • Brüssow H., 2009. The not so universal tree of life or the place of viruses in the living world. Phil. Trans. R. Soc. B (w druku). (doi:10.1098/rstb.2009.0036).
  • Cairns-Smith A. G., 1982. Genetic takeover and the mineral origins of life. Cambridge University Press.
  • Cavalier-Smith T., 2001. Obcells as proto-organisms: membrane heredity, lithophosphorylation, and the origins of the genetic code, the first cells, and photosynthesis. J. Mol. Evol. 53, 555-595.
  • Cech T. R., Bass B. L., 1986. Biological catalysis by RNA. Ann. Rev. Biochem. 55, 599-629.
  • Chyba C. F., Thomas P. J., Brookshaw L., Sagan C., 1990. Cometary delivery of organic milecules to the early Earth. Science 249, 366-373.
  • Ciccarelli F. D., Doerks T., von Mering C., Christopher J., Creevey C. J., Snel B., Bork P., 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283-1287. (doi:10.1126/science.1123061).
  • Cleaves II H. J., 2008. The prebiotic geochemistry of formaldehyde. Precambrian Res. 164, 111-118. (doi:10.1016/j.precamres.2008.04.002).
  • Cleaves H. J., Chalmers J. H., Lazcano A., Miller S. L., Bada J. L., 2008. A Reassessment of Prebiotic Organic Synthesis in Neutral Planetary Atmospheres. Orig. Life. Evol. Biosph. 38,105-115. (doi:10.1007/s11084-007-9120-3).
  • Cockell C. S., 2006. The origin and emergence of life under impact bombardment. Phil. Trans. R. Soc. B 361, 1845-1856. (doi:10.1098/rstb.2006.1908).
  • Corliss J. B., Dymond J., Gordon L. I., Edmond J. M., Von Herzen R. P., Ballard R. D., Green K. i współaut. 1979. Submarine thermal springs on the Galápagos Rift. Science 203, 1073.
  • Crick F. H. C., 1968. The origin of the genetic code. J. Mol. Biol. 38, 367-379.
  • Dawkins R., 1986. /The blind watchmaker./ Longman, Essex. [Wydanie polskie: 1994, /Ślepy zegarmistrz/. PIW, Warszawa].
  • Deamer D. W., 1985. Boundary Structures are Formed by Organic Components of the Murchison Carbonaceous Chondrites, Nature 317, 792-794.
  • Deamer D.W., 1997. The first living systems: a bioenergetuc perspective. Microbiol. Molec. Biol. Rev 61, 239-261.
  • Deamer D., Singaram S., Rajamani S., Kompanichenko V., Guggenheim S., 2006. Self-assembly processes in the prebiotic environment. Phil. Trans. R. Soc. B, 361, 1809-1818. (doi:10.1098/rstb.2006.1905).
  • de Duve C., 1995. Vital dust. Life as a cosmic imperative. BasicBooks.
  • de Duve C., Miller S. L. 1991. Two-dimensional life? Proc. Natl. Acad. Sci. USA 88, 10014-10017.
  • Degens E. T., 1989. Perspectives on biogeochemistry. Springer, Berlin.
  • Delsuc F., Brinkmann H., Philippe H., 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361-375. (doi:10.1038/nrg1603).
  • Des Marais D. J., 1990. Microbial mats and the early evolution of life. Trends Ecol. Evol. 5, 140-144.
  • Diederichsen U., 1996. Pairing properties of alanyl peptide nucleic acids containing an amino acid backbone with alternating configuration. Angew. Chem. Int. Ed. Engl. 35, 445-448.
  • Di Giulio M., 2003a. The universal ancestor was a thermophile or a hyperthermophile: tests and further evidence. J. Theor. Biol. 221, 425-436.
  • Di Giulio M., 2003b. The universal ancestor and the ancestor of Bacteria were hyperthermophiles. J. Mol. Evol. 57, 721-730. (doi:10.1007/s00239-003-2522-6).
  • Di Giulio M., 2007. The universal ancestor and the ancestors of Archaea and Bacteria were anaerobes whereas the ancestor of the Eukarya domain was an aerobe. J. Evol. Biol. 20, 543-548. (doi:10.1111/j.1420-9101.2006.01259.x).
  • Doolitle W. F., 1999. Phylogenetic Classifcation and the Universal Tree. Science 284, 2124-2128. (doi:10.1126/science.284.5423.2124).
  • Doolitle W. F., 2000. Uprooting Tree of Life. Scientific American, February 2000, 90-95.
  • Doolittle W. F., Brown J. R., 1994. Tempo, mode, the progenote, and the universal root. Proc. Natl. Acad. Sci. USA 91, 6721-6728.
  • Doolittle R. F., Feng D.-F., Tsang S., Cho G., Little E., 1996. Determining divergence times of the major kingdoms of living organisms with a protein clock. Science 271, 470-477.
  • Dworkin J. P., Lazcano A., Miller S. L., 2003. The roads to and from the RNA world. J. Theoret. Biol. 222, 127-134.
  • Dyson F., 1985. Origins of Life. Wyd. polskie: Początki życia. PIW, 1993.
  • Dzik J., 2003. Dzieje życia na Ziemi. PWN, Warszawa.
  • Eigen M., Schuster P., 1979. The hypercycle: a principle of natural self-organization. Springer, Berlin.
  • Eschenmoser A., 1999. Chemical etiology of nucleic acid structure. Science 284, 2118-2124. (doi:10.1126/science.284.5423.2118).
  • Fani R., Fondi M., 2009. Origin and evolution of metabolic pathways. Phys. Life Rev. 6, 23-52.
  • Feng S., Tian G., He C. Yuan H., 2008. Hydrothermal biochemistry: from formaldehyde to oligopeptides. J. Mater. Sci. 43, 2418-2425. (doi:10.1007/s10853-007-2009-8).
  • Ferris J., 1994. The potential for prebiotic synthesis in hydrothermal systems. Orig. Life Evol. Biosph. 24, 363-381.
  • Ferris J. P., 2006. Montmorillonite-catalysed formation of RNA oligomers: the possible role of catalysis in the origins of life. Phil. Trans. R. Soc. B 361, 1777-1786. (doi:10.1098/rstb.2006.1903).
  • Ferris J. P., Sanchez R. A., Orgel L. E.,1968. Studies in prebiotic synthesis. 3. Synthesis of pyrimidines from cyanoacetylene and cyanate. J. Mol. Biol. 33, 693-704.
  • Fitz D., Reiner H., Rode B. M., 2007. Chemical evolution toward the origin of life. Pure Appl. Chem. 79, 2101-2117.
  • Forterre P., 2006. The origin of viruses and their possible roles in major evolutionary transitions. Virus Res. 117, 5-16.
  • Forterre P., Gribaldo S., 2007. The origin of modern terrestrial life. HFSP J. 1, 156-168. (doi:10.2976/1.2759103).
  • Forterre P., Prangishvili D., 2009. The origin of viruses. Res. Microbiol. (w druku). (doi:10.1016/j.resmic.2009.07.008).
  • Fox S. W., 1984. Self-sequcing of amino acids and origins of polyfunctional protocells. Orig. Life 14, 485-488.
  • Fox S. W., 1991. Synthesis of life in the lab? Defining a protolifing system. Quart. Rev. Biol. 66, 181-185.
  • Fox S. W., 1995. Thermal synthesis of amino acids and the origin of life. Geochim. Cosmochim. Acta 59, 1213-1214.
  • Fox S. W., Harada K., 1958. Thermal copolymerization of amino acids to a product resembling protein. Science 128, 1214.
  • Fox S. W., Harada K., 1960. The thermal copolymerization of amino acids common to protein. J. Am. Chem. Soc. 82, 3745-3751. (doi:10.1021/ja01499a069).
  • Fox S.W., Jungck J.R., Nakashima T., 1974. From protenoid microsphere to contemporary cell: formation of internucleotide and peptide bonds by protenoid particles. Orig. Life 5, 227-237.
  • Früh-Green G. L., Kelley D. S., Bernasconi S. M., Karson J. A., Ludwig K. A., Butterfield D. A., Boschi C., Proskurowski G., 2003. 30,000 Years of hydrothermal activity at the Lost City vent field. Science 301, 495-498. (doi:10.1126/science.1085582).
  • Fuerst J. A., 2005. Intracellular compartmentation in Planctomycetes. Annu. Rev. Microbiol. 59, 299-328.
  • Fukami-Kobayashi K., Minezaki Y., Tateno Y., Nishikawa K., 2007. A tree of life based on protein domain organizations. Mol. Biol. Evol. 24,1181-1189. (doi:10.1093/molbev/msm034).
  • Gesteland R. F., Cech T. R., Atkins J. A., 1999. The RNA world: the nature of modern RNA suggests a prebiotic RNA world. Wyd. 2. New York, NY: Cold Spring Harbor Laboratory.
  • Glansdorff N., Xu Y., Labedan B., 2008. The Last Universal Common Ancestor: emergence, constitution and genetic legacy of an elusive forerunner. Biol. Direct 3, 29. (doi:10.1186/1745-6150-3-29).
  • Glansdorff N., Xu Y., Labedan B., 2009. The origin of life and the last universal common ancestor: do we need a change of perspective? Res. Microbiol. (w druku). (doi:10.1016/j.resmic.2009.05.003).
  • Gribaldo S., Brochier-Armanet C., 2006. The origin and evolution of Archaea: a state of the art. Phil. Trans. R. Soc. B 361, 1007-1022. (doi:10.1098/rstb.2006.1841)
  • Gribaldo S., Brochier C., 2009. Phylogeny of prokaryotes: does it exist and why should we care? Res. Microbiol. (w druku). (doi:10.1016/j.resmic.2009.07.006).
  • Griffith R.W., 2009. A specific scenario for the origin of life and the genetic code based on peptide/oligonucleotide interdependence. Orig Life Evol Biosph. (w druku). (doi:10.1007/s11084-009-9169-2).
  • Guerier-Takada C., Gardiner K., Marsh T., Pace N., Altman S., 1983. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35, 849-857.
  • Hanczyc M. M., Mansy S. S., Szostak J. W., 2003. Mineral Surface Directed Membrane Assembly. Orig Life Evol Biosph. (doi:10.1007/s11084-006-9018-5).
  • Harrison T.M., 2009. The Hadean Crust: Evidence from \>4 Ga Zircons. Ann. Rev. Earth Planetary Sci. 37, 479-505.
  • Hasegawa M., Fitch W. M., Gogarten J. P., Olendzenski L., Hilario E., Simon C., Holsinger K. E., Doolittle R. F., Feng D.-F., Tsang S., Cho G., Little E. 1996. Dating the cenancester of organisms. Science 274, 1750-1753. (doi:10.1126/science.274.5293.1750).
  • Hazen R. M., Sholl D. S., 2003. Chiral selection on inorganic crystalline surfaces. Nature Mat. 2, 367-374.
  • Hekinian R., Avedik F., Bideau D., Fouquet Y., Francis T. J. G., Franklin J. M., Nesteroff W. D., 1984. Geology: Submersible study of the East Pacific Rise. Nature 311, 606.
  • Holland H. D., 1997. Evidence for life on earth more than 3850 million years ago. Science 275, 38-39.
  • Holland H. D., 2006. The oxygenation of the atmosphere and oceans. Phil. Trans. R. Soc. Bs 361, 903-915. (doi:10.1098/rstb.2006.1838).
  • Holm N. G., Andersson E., 2005. Hydrothermal simulation experiments as a tool for studies of the origin of life on earth and other terrestrial planets: a review. Astrobiology 5, 444-460.
  • Hopkins M., Harrison T. M., Manning C. E., 2008. Low heat flow inferred from \>4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493-496. (doi:10.1038/nature07465).
  • Huber C., Wächtershäuser G., 1997. Activated acetic acid by carbon fixation on (Fe, Ni)S under primordial conditions. Science 276, 245-247.
  • Ikehara K., 2009. Pseudo-Replication of [GADV]-Proteins and Origin of Life. Int. J. Mol. Sci. 10, 1525-1537. (doi:10.3390/ijms10041525).
  • Irvine W. M., 1998. Extraterrestrial organic matter: a review. Orig. Life Evol. Biosph. 28, 365-383.
  • Jortner J., 2006. Conditions for the emergence of life on the early Earth: summary and reflections. Phil. Trans. R. Soc. B 361, 1877-1891. (doi:10.1098/rstb.2006.1909).
  • Kasting J. F., 2005. Methane and climate during the Precambrian era. Precambrian Res. 137, 119-129.
  • Kasting J. F., Ono S., 2006. Palaeoclimates: the first two billion years. Phil. Trans. R. Soc. B 361, 917-929. (doi:10.1098/rstb.2006.1839).
  • Kaźmierczak J., Kremer B., 2002. Thermal alteration of the Earth'soldest fossils. Nature 420, 477-478.
  • Kaźmierczak J., Kempe S., 2004. Calcium build-up in the Precambrian sea - A major promoter in the evolution of eukaryotic life. [W:] Origins: Genesis, Evolution and Diversity of Life. Seckbach J. (red.). Kluwer Acad. Publ. (Springer), Dordrecht, 329-345.
  • Keefe A. D., Miller S. L., Mcdonald G., Bada J., 1995. Investigation of the prebiotic synthesis of amino acids and RNA bases from CO2 using FeS/H2S as a reducing agent. Proc. Natl. Acad. Sci. USA 92, 11904-11906.
  • Kelley D. S., Karson J. A., Früh-Green G. L., Yoerger D. R., Shank T. M., Butterfield D. A. i współaut., 2005. Hydrothermal Field A Serpentinite-Hosted Ecosystem: The Lost City. Science 307, 1428-1434. (doi:10.1126/science.1102556).
  • Koonin E. V., 2009. Darwinian evolution in the light of genomics. Nucleic Acids Res. 37, 1011-1034. (doi:10.1093/nar/gkp089).
  • Koonin E. V., Senkevich T. G., Dolja V. V., 2006. The ancient Virus World and evolution of cells. Biol. Direct 1, 29. (doi:10.1186/1745-6150-1-29).
  • Kopp R. E., Kirschvink J. L., Hilburn I. A., Nash C. Z., 2005. The paleoproterozoic snowball Earth: A climate disaster triggered by the evolution of oxygenic photosynthesis. Proc. Natl. Acad. Sci. USA 102, 11131-11136. (doi:10.1073pnas.0504878102).
  • Lazcano, A.; Miller, S. L., 1994. How long did it take for life to begin and evolve to cyanobacteria? J. Mol. Evol. 39, 546-554. doi:10.1007/BF00160399
  • Lazcano A., Bada J.L., 2003. The 1953 Stanley L. Miller experiment: fifty years of prebiotic organic chemistry. Orig. Life Evol. Biosph. 33, 235-242.
  • La Rowe D. E., Regnier P., 2008. Thermodynamic potential for the abiotic synthesis of adenine, cytosine, guanine, thymine, uracil, ribose, and deoxyribose in hydrothermal systems. Orig. Life Evol. Biosph. 38, 383-397. (doi:10.1007/s11084-008-9137-2).
  • Lemke K. H., Rosenbauer R. J., Bird D. K., 2009. Peptide synthesis in early earth hydrothermal systems. Astrobiology 9, 141-146.
  • Levy M., Miller S. L., Brinton K., Bada J. L. 2000. Prebiotic synthesis of adenine and amino acids under Europa-like conditions. Icarus 145, 609-613. (doi:10.1006/icar.2000.6365).
  • Lincoln T. A., Joyce G. F., 2009. Self-sustained replication of an RNA enzyme. Science 323, 1229-1232. (doi:10.1126/science.1167856).
  • Lopez-Garcia P., Moreira D., Douzery E., Forterre P., van Zuilen M., Claeys P., Prieur D., 2006. Ancient Fossil Record and Early Evolution (ca. 3.8 to 0.5 Ga). Earth, Moon, Planets 98, 247-290. (doi:10.1007/s11038-006-9091-9).
  • Mansy S. S., Jason P., Schrum J. P., Krishnamurthy M., Tobe´ S., Treco D. A., Szostak J. W., 2008. Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122-126. (doi:10.1038/nature07018).
  • Margulis L., 1996. Archaeal- eubacterial mergers in the origin of Eukarya: Phylogenetic classification of life. Proc. Natl. Accad. Sci. USA 93, 1071-1076.
  • Martin W., Russell M.J., 2003. On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Phil. Trans. R. Soc. Lond. B, 358, 59-85. (doi:10.1098/rstb.2002.1183).
  • Martin W., Russell M. J., 2007. On the origin of biochemistry at an alkaline hydrothermal vent. Phil. Trans. R. Soc. B 362, 1887-1925. (doi:10.1098/rstb.2006.1881).
  • Martin W., Baross J., Kelley D., Russell M. J., 2008. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 6, 805-814.
  • Maynard Smith J., Szathmáry E., 1995. The major transitions in evolution. W.H. Freeman, Oxford.
  • Maynard Smith J., Szathmáry E., 1999. The origins of life. From the birth of life to the otigin of language. Oxford University Press, Oxford. [Wydanie polskie: 2000. Tajemnice przełomów ewolucji.] PWN, Warszawa.
  • McCollom T. M., Ritter G., Simoneit B. R. T., 1999. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions. Orig. Life Evol. Biosph. 29, 153-166. (doi:10.1023/A:1006592502746).
  • McKay C. P., Borucki W. J., 1997. Organic Synthesis in Experimental Impact Shocks. Science, 276, 390-391. (doi:10.1126/science.276.5311.390).
  • Miller S., 1953. A production of amino acids under possible primitive Earth conditions. Science 117, 528-529.
  • Miller S. L., 1992. The prebiotic synthesis of organic compounds as a step toward the origin of life. [W:] Major events in the history of life. Schopf J. W. (red.). Jones and Bartlett, Boston, London,1-28.
  • Miyakawa S., Joshi P. C., Gaffey M. J., Gonzalez-Toril E., Hyland C., Ross T., Rybij K., Ferris J. P., 2006. Studies in the mineral and salt-catalyzed formation of RNA oligomers. Orig. Life Evol. Biosph. 36, 343-361. (doi:10.1007/s11084-006-9009-6 c).
  • Miyakawa S., Yamanashi H., Kobayashi K., Cleaves H. J., Miller S. L., 2002. Prebiotic synthesis from CO atmoispheres: Implications for the origins of life. Proc. Natl. Acad. Sci. USA 99, 14628-14631. (doi:10.1073 pnas.192568299).
  • Mojzsis S. J., Arrhenius G., McKeegan K. D., Harrison T. M., Nutman A. P., Friend C. R. L., 1996. Evidence for life on Earth before 3,800 milion years ago. Nature 384, 55-59.
  • Monnard P.-A. 2005. Catalysis in abiotic structured media: An approach to selective synthesis of biopolymers. Cellular and Molecular Life Sciences 62, 520-534. (doi:10.1007/s00018-004-4342-2).
  • Monnard P.-A., Luptak A., Deamer D. W., 2007. Models of primitive cellular life: polymerases and templates in liposomes. Phil. Trans. R. Soc. B 362, 1741-1750. (doi:10.1098/rstb.2007.2066).
  • Monnard P.-A., Deamer D. W., 2001. Nutrient uptake by protocells: a liposome model system. Orig. Life Evol. Biosph. 31, 147-155.
  • Moreira D., López-García P., 2009. Ten reasons to exclude viruses from the tree of life. Nat. Rev. Microbiol. 7, 306-311. (doi:10.1038/nrmicro2108).
  • Nakashima T., Fox S. W., 1980. synthesis of peptides from amino acids and atp with lysine-rich proteinoid. J. Mol. Evol. 15, 161-168.
  • Noyes H. P., Bonner W. A., Tomlin J. A., 1977. On the origin of biological chirality via natural beta-decay. Orig. Life 8, 21-23.
  • Orgel L. E., 1968. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381-393.
  • Orgel L. E., 1998. The origin of life - howlong did it take? Orig. Life Evol. Biosph. 28, 91-96, 1998.
  • Orgel L. E., 2000. Self-organizing biochemical cycles. Proc. Natl. Acad. Sci. USA 97, 12503-12507.
  • Orgel L. E., 2004. Prebiotic adenine revisited: Eutectics and photochemistry. Orig. Life Evol. Biosph. 34, 361-369. (doi:10.1023/B:ORIG.0000029882.52156.c2).
  • Orgel L. E., 2004. Prebiotic chemistry and the origin of the RNA World. Crit. Rev. Biochem. Mol. Biol. 39, 99-123. (doi:10.1080/10409230490460765).
  • Orgel L. E., 2008. The implausibility of metablic cycles on the prebiotic Earth. PLoS Biology 6, 5-13. (doi:10.1371/journal.pbio.0060018).
  • Oró J., Kimball A. P., 1961. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Archiv. Biochem. Biophys. 94, 217-27. (doi:10.1016/0003-9861(61)90033-9).
  • Pascal R., Boiteau L., Forterre P., Gargaud M., Lazcano A., Lopez-Garcia P., Moreira D., Maurel M.-C., Pereto J., Prieur D., Reisse J., 2006. Prebiotic Chemistry - Biochemistry - Emergence of Life (4.4-2 Ga). Earth, Moon, Planets 98, 153-203. (doi:10.1007/s11038-006-9089-3).
  • Pasek M., Lauretta D., 2008. Extraterrestrial Flux of Potentially Prebiotic C, N, and P to the Early Earth. Orig. Life Evol. Biosph. 38, 5-21. (doi:10.1007/s11084-007-9110-5).
  • Pasteris J. D., Wopenka B., 2002. Images of the Earths's earliest fossils? Nature 420, 476-477.
  • Pereto J., 2005. Controversies on the origin of life. Int. Microbiol. 8, 23-31.
  • Pohorille A., Deamer D., 2009. Self-assembly and function of primitive cell membranes. Research in Microbiology (w druku). (doi:10.1016/j.resmic.2009.06.004).
  • Popper K. R., 1990. Pyrite and the origin of life (letter). Nature 344, 387.
  • Powner M. W., Gerland B., Sutherland J. D., 2009. Synthesis of activated pyrimidine ribonucleotides in prebiotically plausible conditions. Nature 459, 239-242. (doi:10.1038/nature08013).
  • Prangishvili D., Stedman K., Zillig W., 2001. Viruses of the extremely thermophilic archaeon Sulfolobus. Trends Microbiol. 9, 39-43.
  • Proskurowski G., Lilley M. D., Seewald J. S., Früh-Green G. L., Olson E. J., Lupton J. E., Sylva S. P., Kelley D. S., 2008. Abiogenic hydrocarbon production at Lost City hydrothermal field. Science 319, 604-607. (doi:10.1126/science.1151194).
  • Raoult D., Forterre P., 2008. Redefining viruses: lessons from Mimivirus. Nature Rev. Microbiol. 6, 315-319.
  • Rode B. M., Son H. L., Suwannachot Y., Bujdak J., 1999. The combination of salt induced peptide formation reaction and clay catalysis: a way to higher peptides under primitive earth conditions. Orig. Life Evol. Biosph. 29, 273-286.
  • Runnegar B., 1995. Genes, sequences, and clocks: molecular clues to the history of life. [W:] Evolution and the molecular revolution. Marshall C. R., Schopf J. W. (red.). Jones and Bartlett Publ. Sudbury, Mass., 53-72.
  • Rushdi A. I., Simoneit B. R. T., 2001. Lipid formation by aqueous Fischer-Tropsch-type synthesis over a temperature range of 100-400oC. Orig. Life Evol. Biosph. 31, 103-118. (doi:10.1023/A:1006702503954)
  • Russell M. J., 2007. The Alkaline Solution to the Emergence of Life: Energy, Entropy and Early Evolution. Acta Biotheor. 55, 133-179. (doi:10.1007/s10441-007-9018-5).
  • Russell M. J., Hall A. J., 2002. From geochemistry to biochemistry. Chemiosmotic coupling and transition element clusters in the onset of life and photosynthesis. Geochem. News. Newsletter Geochem. Soc. 113, 6-12.
  • Russell M .J., Martin W., 2004. The rocky roots of the acetyl-CoA pathway. Trends Biochem. Sci. 29, 358-363. (doi:10.1016/j.tibs.2004.05.007).
  • Russel M. J., Hall A. J., Turner D., 1989. In vitro growth of iron sulphide chimneys: possible culture chambers for origin-of-life experiment. Terra Nova 1, 238-241.
  • Saladino R., Crestini C., Ciciriello F., Pino S., Costanzo G., Di Mauro E., 2009. From formamide to RNA: the roles of formamide and water in the evolution of chemical information. Res. Microbiol. (w druku). (doi:10.1016/j.resmic.2009.06.001).
  • Segré D., Ben-Eli D., Deamer D. W., Lancet D., 2001. The lipid world. Orig. Life Evol. Biosph. 31, 119-145.
  • Shaw G. H., 2008. Earth's atmosphere - Hadean to early Proterozoic. Chemie der Erde 68, 235-264. (doi:10.1016/j.chemer.2008.05.001).
  • Schaefer L., Fegley Jr. B., 2007. Outgassing of ordinary chondritic material and some of its implications for the chemistry of asteroids, planets, and satellites. Icarus 186, 462-483. (doi:10.1016/j.icarus.2006.09.002).
  • Schlesinger, G., Miller, S. L., 1983. Prebiotic synthesis in atmospheres containing CH4, CO and CO2. J. Mol. Evol. 19, 376-382. (doi:10.1007/BF02101642).
  • Schopf J. W., 1993. Microfossils of the early Archean Apex chert: new evidence of the antiquity of life. Science 260, 640-646.
  • Schopf J. W., 2006. Fossil evidence of Archaean life. Phil. Trans. R. Soc. B 361, 869-885. (doi:10.1098/rstb.2006.1834).
  • Schöning K.-U., Scholz P., Guntha S., Wu X., Krishnamurthy R., Eschenmoser A., 2000. Chemical etiology of nucleic acid structure: the α-threofuranosyl-(3'→32') oligonucleotide system. Science 290, 1347-1351.
  • Schwartz A. W., 2006. Phosphorus in prebiotic chemistry. Phil. Trans. R. Soc. B 361, 1743-1749. (doi:10.1098/rstb.2006.1901).
  • Steitz T. A., Moore P. B., 2003. RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem. Sci. 28, 411-418. (doi:10.1016/S0968-0004(03)00169-5).
  • Stetter K. O., 2006. Hyperthermophiles in the history of life. Phil. Trans. R. Soc. B 361, 1837-1843. (doi:10.1098/rstb.2006.1907).
  • Stribling R., Miller S. L., 1987. Energy yields for hydrogen cyanide and formaldehyde syntheses: the HCN and amino acid concentrations in the primitive ocean. Orig. Life 17, 261-273.
  • Summons R. E., Bradley A. S., Jahnke L. L., Waldbauer J. R., 2006. Steroids, triterpenoids and molecular oxygen. Phil. Trans. R. Soc. B 361, 951-968. (doi:10.1098/rstb.2006.1837).
  • Szostak J. W., Bartel D. P., Luisi P. L., 2001. Synthesizing life. Nature 409, 387-390.
  • Thaddeus P., 2006. The prebiotic molecules observed in the interstellar gas. Phil. Trans. R. Soc. B 361, 1681-1687. (doi:10.1098/rstb.2006.1897).
  • Tian F., Toon O. B., Pavlov A. A., De Sterck H., 2005. A hydrogen-rich early Earth atmosphere. Science 308, 1014-1017. (doi:10.1126/science.1106983).
  • Trinks H., Schröder W., Biebricher C., 2005. Ice and the origin of life. Orig. Life Evol. Biosph. 35, 429-445. (doi:10.1007/s11084-005-5009-1).
  • Ueno Y., Yamada K., Yoshida N., Maruyama S., Isozaki Y., 2006. Evidence from fluid inclusions for microbial methanogenesis in the early Archaean era. Nature 440, 516-519. (doi:10.1038/nature04584).
  • Valley J. W., Peck W. H., King E. M., Wilde S. A., 2002. A cool early Earth. Geology 30, 351-354.
  • van der Gulik P., Massar S., Gilis D., Buhrman H., Rooman M., 2009. The first peptides: The evolutionary transition between prebiotic amino acids and early proteins. J. Theor. Biol. 261, 531-539. (doi:10.1016/j.jtbi.2009.09.004).
  • Wächtershäuser G., 1988. An all-purine precursor of nucleic acids. Proc. Natl. Acad. Sci. USA 85, 1134-1135.
  • Wächtershäuser G., 1990. Evolution of the first metabolic cycles. Proc. Natl. Acad. Sci. USA 87, 200-204.
  • Wächtershäuser G., 1997. The origin of life and its methodological challenge. J. Theor. Biol. 187, 483-494.
  • Wächtershäuser G., 2003. From pre-cells to Eukarya - a tale of two lipids. Mol. Microbiol. 47, 13-22.
  • Wächtershäuser G., 2006. From volvcanic origins of chemoautotrofic life to Bacteria, Archaea and Eukarya. Phil. Trans. T. Soc. B. 361, 1787-1808. (doi:10.1098/rstb.2006.1904).
  • Wächtershäuser G., 2007. On the chemistry and evolution of the pionieer organism. Chem. Biodiversity 4, 584-602.
  • Wächtershäuser G., Huber C., 2007. Debating evidence for the origin of life on Earth. Response. Science 315, 937-938.
  • Weber A. L., 2005. Aqueous synthesis of peptide thioesters from amino acids and a thiol using 1,1-carbonyldiimidazole. Orig. Life Evol. Biosph. 35, 421-427.
  • Wittung P., Nielsen P. E., Buchardt O., Egholm M. Norden B., 1994. DNA-like double helix formed by peptide nucleic acid. Nature 368, 561-563.
  • Woese C., 1967. The genetic code, the molecular basis for gene expression. Harper and Row, New York.
  • Woese C. R., Fox G. E., 1977. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proc. Natl. Acad. Sci. USA 74, 5088-5090.
  • Woese C., 1998. The Universal Ancestor. Proc. Natl. Acad. Sci. USA 95, 6854-6859.
  • Woese C. R., Kandler O.,Wheelis M. L., 1990. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87, 4576-4579.
  • Woese C. R., 2000. Interpreting the universal phylogenetic tree. Proc. Natl. Acad. Sci. USA 97, 8392-8396.
  • Woese C. R., 2002. On the evolution of cells. Proc. Natl. Acad. Sci. USA 99, 8742-8747.
  • Zahnle K. J., 2006. Earth's earliest atmosphere. Elements 2, 217-222.
  • Zhu T. F., Szostak J. W., 2009. Coupled growth and division of model protocell membranes. J. Am. Chem. Soc. 131, 5705-5713. (doi:10.1021/ja900919c).
  • Zillig W., Palm P., Klenk H.-P., 1992. The nature of the common ancestor of the three domains of life and the origin of the Eucarya. [W:] Frontiers of Life. Tran Thanh Van J., Mounolou J. C., Schneider J., McKay C. (red.). Gif-sur-Yvette, Editions Frontiers, 181-193.
  • Zimmer C., 2009. On the origin of life on Earth. Science 323, 198-199.
  • Zubay G., Mui T., 2001. Prebiotic synthesis of nucleotides. Orig. Life Evol. Biosph. 31, 87-102.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.